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Rigid Body Dynamics, Inertial Reference Frames, 
and Graphics Coordinate Systems: 

A Resolution of Conflicting Conventions and Terminology

R. B. McGhee, E. R. Bachmann, and M. J. Zyda

Naval Postgraduate School, Monterey, CA 93943
Email: mcghee@cs.nps.navy.mil

Abstract

The field of rigid body dynamics has a long
tradition of study in physics and engineering, and has
achieved a high degree of standardization and clarity of
exposition. In comparison, computer graphics is a rela-
tively new and rapidly growing field with competing
standards and still evolving terminology. The authors
believe that there is much to be gained by examining
commonalities and differences between these two fields
with regard to choice of coordinate systems and meth-
ods used for representing rigid body motion. Toward
that end, in what follows, the basic ideas of rigid body
dynamics are first developed in coordinate-free form.
The standard coordinate system used in aircraft and
ship dynamics (north, east, down) is then introduced
and utilized to derive rigid body dynamics in a form
suitable for computation, the “Newton Euler” equa-
tions. After this, the coordinate system associated with
OpenGL, and other graphics API’s, is compared to the
standard dynamics coordinates. Finally, it is shown that
it is possible to bring the dynamics and graphics per-
spectives on representation and display of rigid body
motion into harmony through the use of a simple con-
stant inverse homogeneous transformation matrix.

1. Introduction

 In a previous paper [1] involving two of the
authors, a quaternion approach to flight dynamics mod-
eling and simulation was presented as a means for
avoiding the Euler angle singularities associated with a
vertical aircraft attitude. Since that time, the authors
have received many requests for additional information
and for further explanations of the mathematics and
physical concepts underlying our simulation. In consid-
ering these requests, we have come to the realization
that there are serious conflicts in terminology and nota-
tional conventions between the fields of physics and
aerospace systems on the one hand, and graphics and
virtual reality on the other. We have also noted that our
students at the Naval Postgraduate School tend to men-
tally compartmentalize their knowledge of these two
fields, and often become confused when forced to con-
front both when faced with physically based modeling
and simulation in a virtual reality system. The purpose
of this paper is to deal with these issues. We hope we
have written a kind of “Rosetta Stone” paper which will
facilitate communication between two areas of science
and technology which have evolved somewhat sepa-

rately, but have now come into a kind of “cultural colli-
sion.”

The present paper begins with a discussion of
the meaning of the term “inertial frame” and the realiza-
tion of modern physics that this idea is somewhat circu-
lar. That is, the very idea of rigid body “motion” is
relativistic, and cannot be defined in absolute terms. The
concept of coordinate-free vector calculus is then intro-
duced, and subsequently used to derive the “Newton-
Euler” equations governing rigid body motion. As part
of this discussion, it is shown that three apparently con-
tradictory definitions of the most common set of Euler
angles used to specify rigid body orientation are in fact
the same, and are in complete agreement regarding their
mathematical representation. In an appendix associated
with this part of the paper, the non-orthogonal transfor-
mations linking body angular velocity to Euler angle
rates are derived and explained. These transformations
are generally unknown in the field of computer graph-
ics, but are central to the Euler angle singularity prob-
lem of rigid body dynamics. A second appendix to this
section shows how quaternion representation of rigid
body orientation both eliminates the singularity problem
and greatly simplifies coordinate transformations in
comparison to the more usual matrix methods.

The second part of this paper explains com-
puter graphics coordinate systems, and highlights con-
flicts with dynamics conventions. These conflicts are
serious, and can lead to fatally flawed simulations, mis-
understood results, and even loss of life or property
when embodied in real physical systems. Fortunately,
there is a solution to these problems involving a simple,
but little understood, mathematical transformation. The
authors hope our results will prove helpful in resolving
the cultural and mathematical conflicts between the
fields of computer graphics and rigid body dynamics.

2. Rigid Body Dynamics

Inertial Frames and Particle Dynamics

Newton's famous “Second Law of Motion” for
mechanical systems is most often expressed as

(1)

where f is “applied force” (or “contact” force), m is
mass, and a is acceleration. A more precise statement of
this law is

f ma=
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(2)

where F is a three-dimensional applied force vector, G is a
three-dimensional “action at a distance” force vector (grav-
ity, electrostatic, electromagnetic, etc.), and V is a three
dimensional velocity vector.

A careful statement of either form of this law also
requires the caveats that position and its time derivatives
must be measured with respect to an “inertial frame” and
that m is a point mass or “particle.” However, this statement
is deceptive because it turns out that there are no point
masses in nature and that what constitutes an inertial frame
depends on the physical and temporal scale of the problem
being addressed. In fact, the only way to define an inertial
frame is to say that it is a frame of reference attached to one
or more physical bodies of a scale much larger than the
problem under study, and such that the Second Law of
Motion applies to an acceptable degree of accuracy for
motion of a particle with respect to this frame. That is, the
view of modern physics is that the very concept of motion
cannot be defined except as the “relative displacement” of
one body with respect to another. This was established in
1887 by the famous Michaelson-Morley experiment [2],
which disproved the existence of an invisible “ether” rela-
tive to which all bodies or waves move.

To make the above notion of an inertial frame
more understandable, it is useful to examine some specific
examples. Consider, for instance, the interior of a vehicle
moving at constant speed in an unchanging direction with
respect to the Earth. Then for objects moving around inside
the vehicle, the Second Law holds to a degree that is usu-
ally acceptable. That is, movement of humans and objects
inside the vehicle appear to be unaffected by its motion. On
the other hand, it is common knowledge that if the vehicle
turns or accelerates longitudinally, coffee spills, passengers
fall down, and other obvious phenomena make it clear that
the Second Law no longer applies with respect to motion
relative to the interior of the vehicle. To deal with an accel-
erating vehicle, it is usually possible to take the surface of
the Earth as an inertial frame, so long as vehicle speed rela-
tive to the Earth is far below orbital velocity. When this is
not the case, it is conventional to describe vehicle (satellite)
motion in a solar frame of reference.[3] Likewise, solar sys-
tem motion is usually studied relative to a galactic reference
frame, etc.

Coordinate-Free Rigid Body Dynamics
All of the above discussion applies the Second

Law to particles. However, this is actually an idealization,
since real physical objects have finite density and therefore
nonzero volume. An important special case of a body with
volume is the “rigid body” idealization which assumes that
a body of mass m also has a shape that cannot be changed.
That is, such bodies are solid and completely inelastic. For-
tunately, it can be shown that the Second Law also applies
to rigid bodies so long as F  is interpreted as the vector sum
of all forces acting on the body, G represents forces exerted
by a uniform gravitational field, and V is the velocity of the
“center of gravity” (also called the “cg” or “centroid”) of
the body. The center of gravity is in turn defined as the
unique point (possibly interior to the body) at which it is
“balanced” in any orientation in the presence of a uniform

gravitational field. Mathematically, this is equivalent to
defining the cg as the unique point at which the first
moment of mass is zero about any axis passing though the
point [4].

To account for the motion of any point on the body
other than the cg, it is necessary to deal with “rotational”
dynamics (Figure1). Specifically, if V is the translational
velocity of the cg, ω  is the angular velocity vector (vector
rate of rotation) of the body, and Rp  is a vector from the cg
to any point p on the body, then

(3)

where x denotes the vector cross-product [4]. Thus, while
the angular velocity measured at any point on a rigid body
is the same as at any other point on the body, this is not true
of translational velocity. Granted these facts, it is natural to
wonder if there is a rotational form of the Second Law. Not
surprisingly, this is the case, with the law taking the form

(4)

where H is the angular momentum vector and M is the vec-
tor sum of all “moments” acting on the body produced by
forces whose “line of action” does not pass through the cg
of the body. All of these terms require further explanation.

The moment of a force acting on a rigid body is
given by

 (5)

where Fi is any applied force vector, and Ri is any vector
extending from the cg of the body to a line collinear with Fi
(the “line of action”). The total moment  (or simply the
moment) M is the vector sum of all such individual
moments (Figure 2). The concept of angular momentum is
somewhat more elusive, and is best developed for arbitrary
rigid bodies after the selection of a specific coordinate sys-
tem attached to the body. However, for the special case of a
rigid body composed of a finite set of point masses (of
course, with all pairwise distances between points con-
stant), or “a system of particles,” the definition is relatively
straightforward. Specifically, the “translational” (or “lin-

F G+
td

d mV=

Vp V ω Rp×+=

M
td

d H=

Figure 1: Rotational and Translational Motion of a 
Point on a Rigid-Body

Rp

Vp

Vωp

M i Ri Fi×=
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ear”) momentum of any particle i in a system of particles is
defined as miVi. The angular momentum or moment of
momentum of such a particle is defined as

 (6)

If H is defined as the sum of all Hi, then it is a
straightforward exercise in vector calculus to show that Eq.
(4) holds for a system of particles [4].

Rigid Body Orientation
The above discussion is based on geometrical con-

cepts and vector calculus, and treats rigid body dynamics at
the highest possible level of abstraction consistent with
mathematical rigor. However, computer simulation of rigid
body dynamics must in the end reduce to scalar calcula-
tions, since this is the inherent nature of computer arith-
metic. To permit this, and yet retain a level of abstraction
suitable for human reasoning, it is conventional for com-
puter simulation of rigid body motion to choose a coordi-
nate system attached to an appropriate inertial frame, and
then to express all vectors in component form relative to
these coordinates. For motion on or near the surface of the
Earth, at speeds far below orbital velocity, a commonly
used coordinate system is the local “flat Earth” system with
an arbitrarily selected origin on the surface of the Earth,
near to the bodies to be simulated, and with coordinate axes
x, y, and z directed in the local north, east and down direc-
tions respectively (Figure 3). To specify orientation, it is
also necessary, for each rigid body, to specify a “body
fixed” coordinate system attached to the body. This is also
an xyz system with x conventionally “out the nose”, z “out
the belly,” and y “out the right side.” (Figure 4) The super-
script or subscript “E” is often used to designate Earth coor-
dinates, while “B” is typically used to signify body
coordinates. This convention will be followed in the
remainder of this paper.

The reference orientation for a rigid body is one in
which all of its body-fixed axes are aligned with the corre-
sponding Earth axes. In general, a body can be moved away
from this orientation by rotating it about one or more of the
Earth-fixed axes. If the order of rotations is first about a
north axis, then about an east axis, and finally about a down
axis, the associated angles are denoted by the reserved
words bank, elevation, and azimuth respectively. When

these terms are used, it is also required that the absolute
value of elevation be not greater than  π/2. When using the
above set of “Euler angles,” there are also reserved symbols
for each angle; namely, bank is designated by φ, elevation
by θ, and azimuth by ψ. In aircraft terminology, bank is
sometimes referred to as “roll.” However, as shown in
appendix A, this “roll” angle is not the integral of the rate of
rotation about the body-fixed nose axis so we avoid this
confusing terminology. Observing these conventions is
extremely important when individuals with a computer
graphics background attempt to communicate with others
working in the fields of engineering, navigation, air or sea
traffic control, military operations, etc. Failure to do so not
only endangers the accuracy of simulation systems, but can
even lead to loss of equipment or human life when actual
military or civil operations are involved.

It is important to realize that the above described
set of Euler angles is not unique. In particular, rotating first
about a north axis is an arbitrary (although universal in
many fields) convention. That is, instead of the rotation
order xyz  used for the bank, elevation, azimuth system, any
of the six permutations of these axis orders (such as yxz, for
example) could just as well have been chosen as a standard
(but none have been other than xyz). Less obviously, yet
another suitable set of axes, used in physics to study the
motion of spinning bodies such as tops, is the set zyz. If
these Euler angles are used, the first rotation is about a local

Hi Ri mi Vi×=

Figure 2: Total Moment of Force Acting on a Rigid-
Body

R1

F1

R2

Ri+1

Ri

F2

Fi+1

Fi

Figure 3: Conventional Aerospace North, East, Down 
Earth-Fixed Coordinate System

+X (North)

+Y (East)

+Z (Down)

Figure 4: Conventional Aerospace Body-Fixed 
Coordinate System

+Y (Right Side)

+X (Nose)

+Z (Belly)
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down axis and is called spin, the second is about an east
axis and is called tilt, and the third is again about a vertical
axis and is called precession . Evidently, a zxz system would
work just as well for this class of problems and, like the zyz
system, can be used to specify the orientation of any rigid
body, whether spinning or not. Likewise xyx, xzx, yxy, and
yzy systems are perfectly general. In summary, taking all of
the above into account, there are twelve possible distinct
choices for Euler angles. Only three of these (xyz, zxz, zyz)
are in common use, and only these have reserved words
used to name the corresponding angles.

In mechanics, Euler angle rotations are often
defined with respect to body-fixed axes rather than earth-
fixed axes. At first, such an approach to specification of ori-
entation would seem to potentially introduce yet another set
of twelve Euler angles. Fortunately, and somewhat surpris-
ingly, this is not the case. Instead, mechanical experiments
(physics, not mathematics!) show that if the temporal order
of rotations is reversed, body axis rotations yield exactly
the same orientation as Earth axis rotations. Specifically,
starting with a given body in its reference orientation, if it is
first rotated through the azimuth angle about its belly axis,
then through elevation about its right side axis, and finally
through the bank angle about its nose axis, the final orienta-
tion of the body will be exactly the same as if these rota-
tions had been performed in the reverse order about Earth
axes [5]. This little appreciated fact can also lead to great
confusion in discussions between individuals from different
fields of science and technology.

While the above described physical facts are cer-
tainly not intuitively obvious, and may even appear to be
paradoxical, there is yet another way of defining Euler
angles which helps to resolve the apparent conflict. This
third approach is derived from the terminology and practice
of naval gunnery and field artillery, and predates the work
of Newton and Euler by several centuries. In particular, to
aim an artillery piece, it is necessary to tilt the gun barrel
upward through an “elevation” angle so that a projectile
will travel the desired distance (or “range”) when the gun is
fired. It is also necessary to rotate the gun carriage to a
proper “azimuth” angle so it points toward the target.
Finally, in most modern guns, when the projectile is fired,
the “rifling” in the gun tube imparts a “roll rate” (or “spin”)
to the projectile to stabilize its flight toward a target. If the
azimuth, elevation, and bank axes all intersect in a common
point (true for some guns, but not all), then the mechanism
that moves the gun is called a “gimbal” system. Thus, gim-
bal systems provide a mechanical means for achieving the
rotations (without translation) discussed in the preceding
paragraphs. Evidently, unlike the two previous definitions
of Euler angles above, the “temporal” order of gimbal rota-
tions does not matter. That is, the gun is “aimed” at the
same point regardless of whether it is first rotated in azi-
muth, and then in elevation, or vice versa. If there is an
actual adjustable bank angle (as in multibarrelled guns), the
temporal order of this rotation is also of no significance.

A mechanical (or geometrical) proof of the equiv-
alence of Earth-fixed axis rotations and body-fixed axis
rotations (of course, with temporal reversal of order) can be
accomplished through the following (real or mental) exper-
iment. Consider a rigid body mounted on a gimbal system
and in its reference configuration (nose axis north, side axis
east, belly axis down). Now suppose bank (inner) gimbal

rotation is accomplished first. In this case, since the nose
gimbal axis is aligned with the Earth's north axis, this rota-
tion corresponds to an Earth fixed x-axis rotation. Since this
rotation does not involve elevation or azimuth, these axes
are still aligned with the east and down axes respectively.
That is, banking a gun tube has no effect on the gun azi-
muth or elevation Euler angles. This being the case, subse-
quent elevation of the gun will be about an east axis, and
finally, azimuth gimbal axis rotation will be about down
axis. This means that xyz rotations about Earth-fixed north,
east, and down axes, in that order, are equivalent to gimbal
rotations. Now suppose the rigid body is again in its refer-
ence configuration and that it is first rotated about its belly
axis. Since this axis is aligned with the azimuth gimbal axis,
this is an azimuth rotation. After this, the body side axis no
longer points east, but it is still aligned with the elevation
gimbal axis, so rotation about the side axis is an elevation
rotation. Finally, by the same arguments, rotation about the
body nose axis is in fact a bank gimbal rotation. This proves
that Earth-fixed axis rotations are physically equivalent to
body-fixed axis rotations providing the temporal order of
rotations is reversed in the two cases1. For the interested
reader, an on-line Virtual Reality Modeling Language
(VRML) simulation of this “mechanical” proof is available
at http://npsnet.org/~bachmann/orientation/orientation.wrl.
Figure 5 below shows a typical frame from this simulation.

Angular and Linear Momentum for Arbitrary Rigid 
Bodies

In order to deal with arbitrary rigid body rotational
dynamics, it is useful to define six “moment of inertia” con-
stants derived from the mass distribution of the body rela-
tive to a specified body-fixed coordinate system (nose, side,
belly coordinates). These are: [5],[6]

1. Unfortunately, some confusion on this point 
still exists in the literature. Specifically, the 
term “Euler angle” is sometimes used exclu-
sively for body axis rotations and “fixed angle” 
is reserved for Earth axis rotations [5]. From 
the above discussion this distinction is evi-
dently unnecessary.

Figure 5: Virtual Gimbals - 3D Simulation
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(7)

(8)

(9)

(10)

(11)

(12)

where dm is an infinitesimal mass element and it is under-
stood that the integral extends over the entire volume of the
body. With these definitions, the “moment of inertia
matrix” for the body is defined as:

(13)

Using I, if the angular velocity of the rigid body in
the body-fixed coordinate system is

(14)

where p, q, and r are the rotational rates about the body x, y,
and z axes respectively, then it can be shown [5] that the
angular momentum of the body is given by:

(15)

The components of Bω  are called “roll-rate”,
“yaw-rate”, and “pitch-rate” respectively. In mechanics,
these are reserved words while the symbols in Eq. (15) are
likewise reserved1 . In a similar way, there is a reserved set
of symbols for the linear velocity of the center of gravity of
a rigid body expressed in body coordinates. These are:

(16)

The corresponding reserved names for these three
linear velocity components are “surge”, “sway”, and
“heave” respectively [6]. Using Eq. (16), linear momentum
can be expressed in body coordinates as:

(17)

1. The terms “pitch” and “yaw” are sometimes 
used as being synonymous with elevation and 
azimuth respectively. However, since as shown 
in Appendix A, the elevation Euler angle is not 
the integral of pitch rate, and the azimuth Euler 
angle is likewise not the integral of yaw rate, 
the authors believe that this usage is mislead-
ing, and it has been avoided in this paper. 

Newton-Euler Equations

With the above definitions of linear and angular
momentum, the linear and angular behavior of an arbitrary
rigid body under the influence of applied forces and
moments can be determined by numerical integration of Eq.
(2) and Eq. (4). However, before this can be done, it is nec-
essary to choose a suitable “state vector” for such a body.
While this vector is not unique, the usual choice is:

(18)

In this equation, all symbols have been defined
above except for the first three, which stand for north posi-
tion, east position, and down position respectively. The cor-
responding “state derivative”, needed for numerical
integration, is:

(19)

Careful examination of the above two equations
reveals some surprising mathematical difficulties arising
from the fact that the last six components of the state vector
are velocities relative to the Earth expressed in the (poten-
tially moving) body-fixed coordinate system, while the first
six components are the integral of these velocities, but only
after they are transformed to Earth coordinates. To solve
this problem, two transformation matrices, R and T, are
introduced so that:

(20)

and

(21)

The matrix T is derived in the attached Appendix A. The
matrix R is given by 

(22)

where the matrices on the right side of this equation are also
given in Appendix A. It is important to realize that this
value for R applies regardless of which of the three physical
rotation methods discussed above is employed [5].

There is yet another more subtle problem associ-
ated with the above choice of state variables due to the fact
that body-fixed coordinates do not in general define an iner-
tial frame, and Newton's laws of motion (Eq. (2) and Eq.
(4)) are valid only with respect to such a frame. To solve
this problem, it is necessary to recognize that when a vector
is represented in coordinate form relative to a rotating coor-
dinate system, its derivative has two components; a “rate of
growth” component relating to changes in the vector as
viewed from the rotating frame of reference, and a “rate of
transport” component due to the rotation of the moving
coordinate system relative to the selected inertial frame.
With respect to translational velocity, this fact can be
observed in driving an automobile in which speed (rate of
growth of velocity vector) is varied by use of the vehicle
brakes and accelerator, while heading (direction of the
velocity vector) is controlled by the steering wheel. Mathe-
matically, this means that [2]

Ixx y2 z2+( ) md∫=

Iyy x2 z2+( ) md∫=

Izz x2 y2+( ) md∫=

Ixy xy md∫=

Ix z xz md∫=

Iy z yz md∫=

I

Ixx I– xy I– xz

I– xy Iyy I– yz

Ixz– I– y z Izz

=

ωB
p q r

T
=

H I p q r
T

=

VB
u v w

T
=

PB m u v w
T

=

x xE yE zE φ θ Ψ u v w p q r
T

=

x·
td

dx=

td
d

xE yE zE

T
R u v w

T
=

td
d

φ θ Ψ
T

T p q r
T

=

R Rz Ψ( )Ry θ( )Rx φ( )=
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(23)

Note that this expression gives linear acceleration relative
to an earth-fixed inertial frame, but in body-fixed coordi-
nates. Thus, referring to Eq. (2), it follows that:

(24)

and consequently,

  

(25)

The above provides one of the two equations for
the velocity part of . The corresponding rotational equa-
tions are obtained by noting that, since I is a constant
matrix, it follows that:

 

(26)

Thus, from Eq. (4),

(27)

and therefore,

(28)

Taken all together, Eq. (20), Eq. (21), Eq. (25),
and Eq. (28) define all of the elements of , and therefore
provide a complete characterization of rigid body dynamics
in a form suitable for solution by numerical integration.
Since Eq. (25) and Eq. (28) are derived from Newton's Sec-
ond law, and make use of Euler angles to specify orienta-
tion, these two equations taken together are usually called
the “Newton-Euler” equations [5]. A complete implementa-
tion of numerical solution of the Newton-Euler equations,
including a selection of numerical integration formulas and
all necessary vector-matrix computations, is available in
ANSI Common Lisp at http://npsnet.org/~bachmann/.

Euler Angle Singularities
While the Newton Euler equations above appear to

provide a complete characterization of rigid body motion,
there remains a hidden problem having to do with Euler
angle singularities. Specifically, when the nose unit vector
of a rigid body points straight up (or down), the bank and
azimuth gimbal axes are collinear. This means that neither
bank nor azimuth angles are uniquely defined, but rather,
only their difference (nose up) or sum (nose down) can be
specified uniquely. This problem is also manifested in an
even more serious way with respect to Euler angle rates
since, as can be seen in Appendix A, the non-orthogonal
body rate to Euler rate transformation matrix (T in Eq. (21))
is singular for this orientation ( ). There are two
common solutions to this problem. One is to integrate body
rotation rates for a short time interval, and then compute an
“incremental” R matrix for the resulting small angles. If

rates are integrated in Earth coordinates, then (from the dis-
cussion of rigid body rotation in earlier paragraphs) the
incremental matrix multiplies R on the left. On the other
hand, if rates are integrated in body coordinates, the multi-
plication is on the right. Either way, however, this method
avoids the singularity in the T matrix since Eq. (21) is not
used at all. Nevertheless, this is only an approximate
method since the angle increments used are not Euler angle
increments. Appendix B describes a more precise method
involving transformation of rotation rates in body coordi-
nates into quaternion rates, and subsequent integration of
these rates to get a quaternion representation of orientation.
Of course, the Euler angle singularity problem arises only
for rigid bodies which are capable of assuming a vertical
orientation.

3. COMPUTER GRAPHICS

Coordinate Axis Conventions

Computer graphics grew out of a desire to present
the numbers produced as the output of digital computation
in a form more easily understood. This need was perhaps
most strongly felt by users of “Fortran”, the first widely
adopted scientific and engineering computer language. The
first graphics facilities generally available to Fortran users
were “line printer” plots obtained by using alphanumeric
characters to represent values of two-dimensional data [7].
While high resolution “flat bed” mechanical plotters were
also provided to some Fortran users, this was a very expen-
sive alternative and was not generally available on an inter-
active basis to users of time-shared computers. This
situation began to improve in the 1970's with the introduc-
tion of CRT terminals and minicomputers. In this time
period, specialized “vector” graphics devices became avail-
able to represent computer output in real time as a set of
straight lines (“vectors”) drawn on an analog oscilloscope
display. This in turn lead to the development of “wire
frame” 3D graphical displays. This form of output was so
computationally demanding that specialized “graphics
computers” were developed to provide high resolution
images in real time [8]. Subsequently, raster graphics dis-
play devices improved to such an extent that they generally
displaced vector graphics display devices in all but a few
highly specialized applications. At the same time, processor
improvements lead to the replacement of specialized graph-
ics computers by graphics workstations providing color 3D
graphics with hidden surface elimination in real time [9].
Today, advances in personal computer hardware and the
availability of general purpose graphics API’s such as
OpenGL have made real-time 3D graphics available to all
computer users at a very low cost. This in turn has made 3D
over the Internet feasible, and has lead to distributed virtual
reality simulation systems [10].

The coordinate systems used by most graphics
API’s evolved from simple 2D graphics on a computer dis-
play screen surface. This lead to a different orientation of
the coordinate axes than those depicted in Figure 3 or Fig-
ure 4. It remains a widespread convention in the graphics
field to use the reserved symbol “x” as a default label for
the horizontal coordinate and “y” for the vertical coordi-
nate. In order to provide a basis for the application of per-
spective transformations within a 3D “viewing volume”, a
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“z” axis directed out of the display screen was added.
Since, positive y is up on the display surface, and positive x
is to the right, it follows that the xyz axes of this system
define a set of “right handed” coordinates as depicted in
Figure 6.

Graphics Transformations and Coordinate Systems

In OpenGL, and in 3D graphics languages in gen-
eral, rigid body surfaces are approximated by polygons
which in turn are described by vertex locations. The verti-
ces which describe an object are normally positioned rela-
tive to a coordinate system which has a fixed relation to the
object itself. In OpenGL, this fixed coordinate system is
termed object coordinates [11] and follows the convention
depicted in Figure 6. 

Several transformations are performed upon the
vertex data as the associated polygons are processed by the
rendering pipeline. Each of the transformations discussed
here is performed using a 4 x 4 “homogeneous transform”
matrix which takes the vertex coordinates from one coordi-
nate system to another. Graphics systems usually use
homogeneous transform matrices to treat rotation and trans-
lation in a uniform way [11]. Thus, both successive rota-
tions and translations are accomplished by multiplication of
4x4 matrices.

Objects are positioned and oriented within a scene
or relative to each other by modeling transformations.
Modeling transformations take the form of a homogenous
transform matrix M. The matrix M generally performs a
rotation, translation, or both. The transformed vertex coor-
dinates, vw, of a vertex v are produced through the multipli-
cation

(29)

The result of the transformation expressed by Eq. (29) is
often termed world coordinates [12].

To individuals with a background in dynamics, it
comes as a surprise to learn that OpenGL and similar lan-
guages make no mention of Euler angles. Instead, the orien-
tation of an object is represented directly by its rotation
matrix. The “elementary” rotation matrices Rx, Ry, and Rz
are algebraically identical to the matrices defined in Appen-
dix A, but the corresponding rotation angles are not called
bank, elevation, and azimuth since these are reserved words
used only for Earth coordinate axis rotations. Moreover, in
OpenGL, no names at all are assigned to rotation angles.
This is partly due to the fact that the idea of rotation about
workstation coordinates is extended in OpenGL to be about

any axis, with the axis being defined as a vector expressed
in workstation coordinates. Rotations are therefore defined
as “vector-angle pairs”. Such a pair is very close to the con-
cept of a quaternion as described in Appendix B.

Since rotations can be about any axis in OpenGL,
there is no simple way to accumulate by numerical integra-
tion even one scalar angle, much less three “Euler” angles
as in dynamics. Instead, all rotations in OpenGL are accom-
plished by simply pre-multiplying the current rotation
matrix by any new rotation matrix. Thus, the idea of “Euler
angle rates” does not even arise, and the T matrix derived in
Appendix A is not used in OpenGL. This has the very sig-
nificant result that the singularity of the T matrix (no
inverse) that occurs at elevation angles of plus or minus π/2
has no relevance in graphics (unless Euler angles are
needed for instrument display simulation as in aircraft flight
simulation [1]). On the other hand, when rotation is repre-
sented directly by rotation matrices there is no concept of a
state vector in a form suitable for rigid-body dynamics.

Once modeling transformations have been com-
pleted and all objects have been positioned in world coordi-
nates, viewing transformations are performed to position
the view volume. Positioning of the view volume is analo-
gous to positioning and aiming a camera. The viewing
transformations take the form of a 4 x 4 inverse homoge-
nous transformation matrix. Application of modeling and
then viewing transformations takes a vertex from world
coordinates to eye coordinates. If the matrix V-1 represents
the rotations and translations needed to position the view
volume, then the coordinates of the vertex v in eye coordi-
nates are given by

(30)

The matrix V-1 represents a combination of rotations and
translations which are mathematically identical to the rota-
tions and translations which are applied as modeling trans-
formations. The only real difference is the order in which
the transformations are applied to v. All modeling transfor-
mations described by M must be completed before the
viewing transformations of V-1. Thus in Eq. (30), the matrix
M appears farthest to the right and nearest to v. This order is
opposite the order the transformations appear in the appli-
cation code, but is the actual order in which the transforma-
tions are carried out by the rendering pipeline.[11]

In effect, viewing transformations perform a trans-
lation from world coordinates into the eye coordinates of
the “camera.” It should be understood that a modeling
transformation that rotates an object clockwise is equivalent
to a viewing transformation that rotates the object counter-
clockwise. Thus, graphics programmers often find it easier
to think of viewing transformations as moving all the
objects in the world relative to a stationary camera instead
of moving the camera position relative to stationary objects.
Individuals with a background in dynamics may at times
find this way of thinking alarming since it is clearly impos-
sible in the physical world. In the mathematical world of
graphics however, the two are equivalent.

Following the viewing transformation into eye
coordinates, the OpenGL rendering pipeline subjects vertex
data to several addition transformations which are strictly
graphics related. The “projection transformation” produces

Figure 6: Typical Coordinate System Used by a 
Graphics API
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“clip coordinates.” Subsequently, “normalized device coor-
dinates” result from “perspective division.” Finally, “win-
dow coordinates” are produced by the “viewport
transformation.” [11]

4. UNITING GRAPHICS AND 
DYNAMICS COORDINATE AND 
MOTION CONVENTIONS

In comparing graphics and dynamics conventions,
it can be seen that graphics object coordinates and the body-
fixed coordinate system described previously in Section 2
for use in representation of orientation under aerospace
conventions serve similar purposes. The world coordinate
system discussed above corresponds to the aerospace earth-
fixed coordinate system in the same way. However, since
graphics grew from the display of simple 2D images on a
computer display screen surface, the orientation and
arrangement of the coordinate axes do not match.

Though all systems are right-handed, comparison
of Figure 6 to Figures 3 and 4 shows that the vertical axis
under graphics conventions is the y axis with positive being
up, while the vertical axis under aerospace conventions is
the z axis with the positive direction being down. If it is
desired that an existing graphics pipeline perform the ren-
dering, this lack of correspondence makes is impossible to
follow traditional aerospace conventions in physically
based graphics applications without some type of modifica-
tion.

Vertex locations expressed in a traditional north,
east, down coordinate system can be translated to a y axis
up system such as used in graphics API’s using the inverse
homogenous transform

(31)

The matrix H-1 is the homogeneous transform from north,
east, down coordinates to y axis up coordinates. Using this
inverse it is possible to work with object coordinates and
perform all modeling transformations with respect to a z
axis down coordinate system such as depicted in Figures 3
and 4. Viewing transformations may also be completed rel-
ative to a conventional north, east, down coordinate system.
In this case Eq. (30) becomes

(32)

The results of Eq. (32), may then be processed by a y axis
up graphics pipeline. Note, that the inverse transform is
applied to the vertex data last after all modeling and view-
ing transformations have be completed. With this approach,
the Newton-Euler equations remain valid and the graphics
and dynamics points of view are brought into harmony.

5. SUMMARY AND CONCLUSIONS 

The fields of rigid body dynamics and computer

graphics have confronted many of the same physical and
mathematical problems, but have developed more or less
independently and from quite different perspectives. With
the advent of distributed virtual reality systems, these two
fields have experienced a cultural collision which has
exposed serious difficulties in terminology and coordinate
conventions which have in turn inhibited dialogue between
these two communities and have sometimes lead to incor-
rect or unnecessarily complicated simulations. In particular,
singularity problems associated with Euler angle represen-
tation of rigid body orientation are little appreciated by the
graphics community, and are often dealt with by mathemat-
ically incorrect “hacks”. We hope this paper clarifies this
problem and provides easily understood alternatives. We
also hope that we have made the elegant and efficient use of
quaternions for representation of rigid body orientation
more accessible.

So far as the dynamics community is concerned,
the use of workstation coordinates for dynamic simulation
studies has proved baffling, since the Newton-Euler equa-
tions for rigid body motion are usually applied in a “north,
east, down” Earth fixed coordinate system. We have shown
that a simple fixed coordinate transformation resolves this
problem both conceptually and with respect to actual graph-
ics API code. Finally, we believe that we have brought
together the physics and mathematics of rigid body dynam-
ics in a simplified form which has previously been unavail-
able from a single source. We hope that future development
of graphics API’s will be affected by the results we have
presented, and that careful choice of coordinates and termi-
nology in such systems will serve to achieve a greater
degree of harmony with the established conventions of
physics and aerospace engineering.
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 Appendices

 Appendix A: Derivation of Body Angular 
Rates to Euler Angle Rates Relationship

Let Rx, Ry and Rz be elementary rotation matrices
about the local north, east and down axes respectively.
Also, let Bω be the angular rate of a rigid body measured in
body coordinates and , , and  the corresponding Euler
angle rates of the body (bank, elevation, and azimuth rates,
respectively). The angular velocity of a rigid body in earth
coordinates, is then given by

(33)

Evidently

(34)

Substituting Eq. (33) into Eq. (34), and using the inverse

law of transposed matrices produces:

(35)

(36)

Since, [11]

(37)

(38)

(39)

it follows from the first term of Eq. (36), that the rotational
rate about an earth fixed down axis expressed in body coor-
dinates is given by:

(40)

In a similar manner, the following are obtained from the
second and third terms of Eq. (36) respectively:

(41)

(42)

To obtain expressions for body rates in terms of
Euler rates and angles, Eq. (40), Eq. (41) and Eq. (42) can
be combined to produce

(43)

(44)

(45)

In order to solve for , , and  in terms of p, q,
and r, it is useful to note that Eq. (44) and Eq. (45) involve
only , and . Thus, multiplying Eq. (44) by cos ϕ and Eq.
(45) by -sin ϕ and adding produces the result

(46)
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Substituting this result into Eq. (45) yields:

(47)

Finally, using this result in Eq. (43),

(48)

In matrix form, these results can be rewritten as:

(49)

where sec θ = 1 / cos θ. Evidently, the T matrix is singular
for .

 Appendix B: Quaternion Representation of 
Rigid Body Orientation

A “quaternion” is a four dimensional vector with
an associated “quaternion product”. There are three com-
monly used notations for quaternions. First of all, the “com-
ponent” form is simply:

                                                  (50)

where the parentheses denote a list, or equivalently, a vec-
tor. Another notation is the “flag” form:

                                     (51)

In this form, the symbols i, j, and k, are flags which in fact
stand for the “unit vectors”

                                                      (52)

                                                       (53)

                                                       (54)

Equivalently, and more commonly, the flag form can be
written:

                                                (55)

The third form of representation is:

                                                          (56)

or

                                                          (57)

where s is a scalar and u is any three-dimensional unit vec-
tor. In this representation, w is often called the “real” part
and v the “vector” part of the quaternion. Evidently, these
three representations are equivalent, and conversion from
one form to another is trivial.

The quaternion product is defined as:

        

        

    (58)

From this definition, evidently

                          (59)

which is often abbreviated simply to:

                                                     (60)

Likewise, again from the definition of the quaternion prod-
uct,

                                       (61)

and

                                                   (62)

                                                   (63)

                                                 (64)

Equivalently, and more elegantly, Eq. (62), (63), and (64)
can be summarized as:

                                                          (65)

Using these results, an alternative (but equivalent) defini-
tion of the quaternion product is often presented by taking
Eq. (60), (61), and (65) as a given (axiomatic) “flag alge-
bra”, and then deriving Eq. (58)1 . This approach is also use-
ful for quaternion analysis, since all the rules of scalar
arithmetic and scalar calculus apply to the flag representa-
tion of a quaternion. This is analogous to the conventional
use of the symbol i (or j) to flag the “imaginary” part (sec-
ond component) of a complex number (two dimensional
vector with associated “complex” product).

The above defined flag algebra exhibits some of
the characteristics of the corresponding flag algebras for
two dimensional vectors (Eq. (60)), and some of those of
three dimensional vectors(Eq. (65)). This leads to the third
common definition of the quaternion product (equivalent to
the two above), which is most easily derived using flag
algebra. Specifically, if two quaternions are written in the
form of Eq. (57), then:

(66)

1. This approach is taken in [1], but the equation 
corresponding to Eq. (58) above has some typo-
graphical errors. Demonstration of the correct-
ness of Eq. (58) is an easy exercise in 
quaternion flag algebra.
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where x represents the standard vector “cross” product and
“.” stands for the standard vector “dot” product (square of
vector length). The presence of the cross product term in
this equation shows that, unlike the complex product, the
quaternion product is not commutative.

In order to use quaternions to specify orientation,
it is necessary to redefine the state vector for a rigid body
as:

(67)

Since this is a vector of length 13, whereas the previously
defined state vector (using Euler angles) was of length 12, it
is conventional to apply the constraint that q is a unit vec-
tor. That is,

(68)

When this is done, then it can be shown [1] that

(69)

where, of course the indicated product is a quaternion prod-
uct and the q component of Bω is yaw rate, and not the
quaternion q.

   Given , q can be determined by numerical inte-
gration (followed by periodic normalization for correction
of integration drift errors) and then used to compute a corre-
sponding rotation matrix, thereby avoiding altogether the
singularities of the body rate to Euler rate transformation
matrix discussed in Appendix A. While this is done in [1], a
more straightforward way is to simply use quaternion rota-
tion of vectors by means of the equation [13]:

(70)

where (for unit quaternions)

(71)

A geometrical interpretation of this result can be obtained
by rewriting q as:

(72)

where u is a unit vector. In this form, u is the axis of rota-
tion of any rigid body motion, and alpha is the angle of
rotation. Code for this transformation and all other quater-
nion operations discussed in this appendix is available in
ANSI Common Lisp at http://npsnet.org/~bachmann/.

From Eq. (70) and (71), evidently -q accomplishes
the same rotation as q. If it is desired to eliminate this ambi-
guity, from Eq. (72), and if the range of values for α is
restricted to -π < α < π, then the real part of q will be non-
negative. In this case, from Eq. (68),

(73)

and q0 can be eliminated from the state vector given by Eq.
(67). This approach amounts to constraining quaternions to
lie on a unit four dimensional hemisphere. Such quater-

nions can be referred to as being in their “positive real
form” since q0  is non-negative.
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