
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

IMPLEMENTATION OF A MULTI-AGENT SIMULATION
FOR THE NPSNET-V VIRTUAL ENVIRONMENT

RESEARCH PROJECT

by

David B Washington

September 2001

Thesis Advisor: Michael Capps
Second Reader: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2001
3. REPORT TYPE AND DATES COVERED
Masters Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)

Implementation of a Multi-Agent Simulation for the NPSNET-V Virtual
Environment Research Project

5. FUNDING NUMBERS

6. AUTHOR(S): David B. Washington
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement (mix case letters)

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Traditional networked military simulation systems are technologically frozen the moment they are

completed, thus limiting the participants that can interact in the simulation. When training for urgent missions in
emerging conflict areas, assimilating new models, threat behaviors, and new terrain environments into the
simulators requires lengthy integration, is prohibitively costly, and is non-distributable electronically at runtime.
Threat behaviors are pre-scripted, lack organization, and do not accurately portray doctrine or rules-of-engagement.

NPSNET-V is a novel architecture for networked simulations that supports scalable virtual worlds with
built-in dynamic entity loading. These advances address each of the above concerns: scalability, entity and
environment distribution, and dynamic technology loading. By combining this architecture with a system for
creating autonomous, adaptable agents, threat forces can be accurately simulated. This architecture is useful for
proposing designs for strategies, tactics, or force packages during the conduct of experiments.

The result of this thesis is a proof-of-concept application demonstrating the utility of these architectural
advances. In this application, numerous autonomous agents form complex, dynamic, and adaptable interactions
with resident and remote heterogeneous entities. These results define the course for future military models and
simulations.

14. SUBJECT TERMS
Multi-Agent Simulation, agent-based simulation, adaptive agents, autonomous agents,
networked virtual environment.

15. NUMBER OF PAGES

101

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A MULTI-AGENT SIMULATION FOR THE NPSNET-
V VIRTUAL ENVIRONMENT RESEARCH PROJECT

David B. Washington
Major, United States Army

B.S., Tulane University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Approved by:

Don McGregor, Second Reader

Author:

David B. Washington

Chris Eagle, Chairman
Computer Science Department

Michael Zyda, Thesis Advisor

Michael Capps, Thesis Co-Advisor

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Traditional networked military simulation systems are technologically frozen the

moment they are completed, thus limiting the participants that can interact in the

simulation. When training for urgent missions in emerging conflict areas, assimilating

new models, threat behaviors, and new terrain environments into the simulators requires

lengthy integration, is prohibitively costly, and is non-distributable electronically at

runtime. Threat behaviors are pre-scripted, lack organization, and do not accurately

portray doctrine or rules-of-engagement.

NPSNET-V is a novel architecture for networked simulations that supports

scalable virtual worlds with built-in dynamic entity loading. These advances address

each of the above concerns: scalability, entity and environment distribution, and dynamic

technology loading. By combining this architecture with a system for creating

autonomous, adaptable agents, threat forces can be accurately simulated. This

architecture is useful for proposing designs for strategies, tactics, or force packages

during the conduct of experiments.

The result of this thesis is a proof-of-concept application demonstrating the utility

of these architectural advances. In this application, numerous autonomous agents form

complex, dynamic, and adaptable interactions with resident and remote heterogeneous

entities. These results define the course for future military models and simulations.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. THESIS STATEMENT .. 1
B. MOTIVATION... 1

1. Monterey Bay Aquarium .. 2
2. Autonomous, Adaptable Agents ... 3

a. Interaction with New, Unknown Agents .. 3
b. Learning .. 4
c. Master/Ghost... 5

3. Dynamic Behaviors... 6
4. Networked Virtual Environment... 7

C. APPROACH ... 7
1. Integrate RELATE with NPSNET-V Model, View, Controller 7

a. Create New Agent Types .. 9
b. Add New Agent Behaviors ... 9
c. Agents’ Distinct Personalities... 10
d. Genetic Algorithm Replicates Natural Selection.............................. 11

2. Creating New NPSNET-V Applications .. 12
3. Proof of Concept: FishWorld... 13

D. PROBLEM.. 14
1. How to Give RELATE Behaviors to NPSNET-V Entities................... 14
2. How to Extend the Features of NPSNET V.. 14

a. How to Interface with Dynamically Added Agents.......................... 14
b. How to Solve Collision Detection with a Complex Environment.... 15
c. How to Solve Convergence and Dead Reckoning for Ghosts 15

3. How to Create a Realistic Underwater Environment............................ 15
a. How to Solve Physics of Fish Including Aquarium Wave Motion .. 16
b. How to Create Realistic Kelp ... 16
c. How to Create Realistic Underwater Environment 16

E. THESIS ORGANIZATION.. 17

II. BACKGROUND ... 19

A. TECHNOLOGIES .. 19
1. Multi-Agent Simulation .. 20
2. RELATE ... 20
3. Genetic Algorithms... 21
4. Java3D... 23
5. VRML... 23

B. RELATED WORK ... 24

viii

1. NPSNET-V ... 24
a. Lightweight Directory Access Protocol (LDAP).............................. 24
b. Entity Dispatcher .. 26
c. Area of Interest Manager .. 27
d. Dynamic Protocol/Entity Discovery ... 28
e. Dynamic Network Optimization... 28

2. Kelp Forest Modeling Project... 29
a. Static Path Animation ... 29
b. Static Environment.. 29

3. Capture the Flag.. 30
a. Distributed Interactive Simulation.. 30
b. Multi-Agent Behaviors in Capture the Flag...................................... 31

4. El Farol.. 31
a. Adaptable Behaviors... 32
b. Dynamic Emergent Behavior.. 32

5. Boids ... 33
a. Flocking Behavior... 33
b. Terrain Avoidance .. 34

C. CONCLUSION... 35

III. INTEGRATE RELATE WITH NPSNET-V MODEL, VIEW,
CONTROLLER .. 37

A. RELATE IMPLEMENTATION .. 37
B. NPSNET-V ... 39

1. RELATE Agent to NPSNET-V EntityMaster 40
2. NPSNET-V EntityGhost... 43
3. NPSNET-V View.. 46

C. CONCLUSION... 46

IV. CREATING NEW NPSNET-V APPLICATIONS 49

A. COLLISION DETECTION.. 50
1. Entity-to-Environment Collisions... 51
2. Entity-to-Entity Collisions .. 51

B. PHYSICS .. 53
C. MODEL, VIEW, CONTROLLER ... 53

1. Master ... 54
2. Ghost ... 56

a. Steering Commands .. 58
b. Full State Protocol... 59
c. Fire Torpedo Command.. 59
d. Suffer Attack... 60

3. View.. 61
4. Controller .. 63

D. CONCLUSION... 63

ix

V. PROOF OF CONCEPT: FISHWORLD .. 65

A. INTENT OF FISHWORLD.. 65
1. Features ... 65

a. Dynamic Heterogeneous Entity Discovery....................................... 65
b. Scalability ... 66
c. Application Generic Implementation.. 67

2. Autonomous Entity Requirements.. 67
B. INTERACTING WITH A DYNAMIC WORLD..................................... 68

1. Learning .. 68
2. Memory... 69
3. Genetic Algorithm .. 70

C. CREATING NEW AGENT BEHAVIORS.. 71
1. Roles ... 72
2. Goals and Rules .. 72

a. Dead Goal ... 73
b. Avoid Wall Goal ... 73
c. Keyboard Control Goal... 75
d. Avoid Collision Goal .. 76
e. Flee Goal... 77
f. Eat Goal .. 77
g. School Goal... 79
h. Cruise Goal ... 82

3. Actions .. 82
D. CREATING DISTINCT PERSONALITIES.. 83

1. Aggressive... 83
2. Collision Wall ... 83
3. Collision Fish .. 84
4. Schooling Preferences... 84
5. Twistedness... 85
6. Hungriness .. 85
7. Blindness... 85

E. CONCLUSION... 85

VI. CONCLUSION ... 87

A. RESULTS ... 87
B. CONCLUSION... 88
C. FUTURE WORK.. 89

1. Agent Ghost Controller... 89
2. Dead Reckoning.. 90
3. Agent Network Tuning ... 90
4. Scalability Study ... 91
5. Code-less Agent Creation ... 91
6. Component Loading.. 92

x

7. Security ... 92
8. New Virtual Worlds.. 93

a. Warfighting Experiment (WE) ... 93
b. Experiment with Tactics ... 94
c. Experiment with Systems ... 95

GLOSSARY... 97

LIST OF REFERENCES... 99

INITIAL DISTRIBUTION LIST .. 101

xi

LIST OF FIGURES

Figure 1. Model, View, Controller Design Paradigm..................................... 8

Figure 2. Genetic Algorithm... 22

Figure 3. NPSNET-V LDAP Directory Server... 25

Figure 4. Entity Dispatcher Receive Sequence. .. 27

Figure 5. RELATE Decision Tree.. 38

Figure 6. FishWorld EntityMasters... 40

Figure 7. EntityMaster Design. .. 41

Figure 8. EntityGhost Design. .. 46

Figure 9. Virtual World Layers. .. 50

Figure 10. Entity-To-Entity Collision Detection. .. 51

Figure 11. EntityMaster Layers.. 54

Figure 12. EntityGhost Layers.. 57

Figure 13. EntityView Layers. .. 61

Figure 14. Local Max / Theoretical Max. .. 70

Figure 15. FishWorld Decision Tree. ... 71

Figure 16. Aquarium Layout From Ref. [Brutzman, 2001]......................... 75

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ABBREVIATIONS AND ACRONYMS

CAS Complex Adaptive Systems

DIS Distributed Interactive Simulation

DoD Department of Defense

GA Genetic Algorithm

GUID Globally Unique Identifier

ISAAC Irreducible Semi-Autonomous Adaptive Combat

LDAP Lightweight Directory Access Protocol

MAS Multi-Agent System

MOVES Modeling, Virtual Environments and Simulation

MVC Model, View, Controller

NPS Naval Postgraduate School

PDU Protocol Data Units

URL Uniform Resource Locator

VE Virtual Environment

VRDNS Virtual Reality Domain Naming Service

VRML Virtual Reality Modeling Language

WE Warfighting Experiment

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

 I. INTRODUCTION

A. THESIS STATEMENT

By combining a fully dynamic, scalable networked virtual environment (VE) with

an interactive multi-agent simulation architecture, it is possible to develop virtual

environments supporting a large number of dynamic, heterogeneous entities with

complex, adaptable, and interactive behaviors. The dynamic VE architecture is useful in

geographically distributed deployments where it is difficult to coordinate

shutdown/restarts across global time zones. The multi-agent architecture is useful for

developing evolving environments that do not have a completely specified list of entities

or interactions. Environments developed by combining these architectures are powerful

tools for solving complex problems, and can be configured at run-time without requiring

a redesign of a structured, monolithic architecture. These problem spaces include those

requiring rapid prototyping, detailed experimentation, or extensive testing/simulation.

An aquarium setting will serve as a proof of concept environment, in which numerous

autonomous agents interact with resident and remote heterogeneous entities to form

dynamic, adaptable behaviors.

B. MOTIVATION

VEs with dynamic adaptable behaviors can help to solve a large class of problems

that are complex and costly (including military training scenarios and simulations).

NPSNET-V (Capps, 2000) provides a canvas for creating networked 3-D virtual world.

Current networked games and simulations require prior knowledge of all entities that will

2

be used in the system, their graphical representations, implemented behaviors, and

protocols. Adding new features requires shutting down, coding, integrating, testing, and

recompiling the entire system. This is a shortcoming not inherent in the NPSNET-V

architecture due to dynamic loading/entity-discovery capability. By using a plug-able

Area of Interest Manager (AOIM), any NPSNET-V VE can be scaled to host a large

number of participants. By combining these capabilities into a single project, the

NPSNET-V architecture could likely advance work in military simulations, real-time

prototyping, future-capabilities experiments, and on-line interactive games. Additionally,

any user combining NPSNET-V with RELATE (an agent architecture discussed in

Chapter II) can create agents that interact with others that have yet to be created without

the use of deterministic methods.

1. Monterey Bay Aquarium

The NPSNET-V research group decided that the Monterey Bay Aquarium would

be a useful first application. It is easily identifiable to the Monterey community and

could bring positive attention to the research. This environment is densely populated and

will fully test the true scalability limits of NPSNET-V (innovative techniques are used to

conquer network bandwidth constraints—see Chapter II). In addition to density, the

aquarium has a highly heterogeneous population of sea life. This population is a

continuously dynamic population where new species are added and removed frequently.

There exists a myriad of interactions between these continually changing characters. The

result of this thesis is an application where autonomous agents will interact and adapt to

3

this dynamic, scalable environment. This creates unlimited possibilities for behavior

modeling and testing. The application described in this thesis features the aquarium and

is a proof-of-concept application that fully tests the capabilities of NPSNET-V. The

name of this virtual world is FishWorld.

2. Autonomous, Adaptable Agents

The heterogeneous, autonomous agents that populate the application interact with

others that are added dynamically. These agents learn about and adapt to the new

additions without using deterministic algorithms in scripted behaviors. Not all the

possible interactions are known before introduction. The determination of which agent

will be dominant or most successful is left up to the agent that best adapts. If there are

many different types of predators, the food chain is determined by natural selection.

Rigid, non-adaptable agents may emerge dominant in the short term, but may in turn

become dominated by agents that are adaptable. The ability to combine an agent

architecture, like RELATE, and NPSNET-V will create a test-bed application useful for

experimentation—integrating improvements from previous iterations for subsequent

trials. The ability to iteratively test new subjects in an environment is the process for

many industrial, scientific, and military experiments. This is especially useful for the

simulation of human participants in automated forces.

a. Interaction with New, Unknown Agents

Before the U.S. Army committed to purchasing the Longbow Apache

attack helicopter, the Aviation Battle Lab at Fort Rucker, AL had to conduct several

4

experiments to prove its worth and determine effective employment principles.

Designers had to create several dedicated software models to support these tests. These

models were replicated in many software languages for dozens of different, preexisting

applications. Many of the applications were reworked, because existing models required

extensions to replicate the interactions with the Longbow. Because NPSNET-V allows

for dynamically added entities, and because RELATE can give these entities autonomy

and the capability for complex, adaptable interactions, the results of this thesis could be

applied to applications used for experimentation such as those used for the Longbow.

This exciting technology could be extended to an unlimited number of additional

applications.

b. Learning

It would be valuable for military acquisitions of new systems if a

simulation could replace how humans employ and test new weapon systems without

requiring expensive human input for this tedious, arduous task. A simulation system can

apply learning from previous iterations for employment in follow-on iterations. Only

subjects that perform well or combinations of well performing subjects would be allowed

to continue to subsequent testing. The computer could evaluate employment of the

experimental weapon system in ways that a human may never have imagined. To

accomplish this, agents must be created that learn. During the interactions such as those

described above, a military system may be added to a virtual environment. It is unknown

whether existing systems will continue to dominate in the VE. Adaptable, autonomous

agents could have been used by the Aviation Battle Lab to suggest the most effective

5

employment principles of the Longbow in the confines of the simulated situation. By

letting the simulation run, the agent could adapt to its environment, discover interactions

with friends and foes, and learn about its own capabilities. After several iterations, an

analysis could be conducted to determine how the agent had adapted and what the

opposing force had done to counteract the agent’s capabilities. This information could be

used in a determination of the tested system’s effectiveness.

c. Master/Ghost

In networked VEs, an agent will actually interact with the graphical

representation of other agents remotely located elsewhere on the network. Entities

update their position by transmitting packets, but this transmission can flood a network

severely limiting the number of participants. Inaccuracies in packet transmission exist

due to network latency, bandwidth restrictions, and limited buffer sizes further restricting

the number of possible participants (Singhal and Zyda, 1999). Due to these network

bottlenecks, the number of participants in a simulation of a battle is often limited to those

of the smallest organizations—not those of realistic combat organizations—severely

limiting the validity of military experiments and simulations. The requirement exists for

a scalable, accurate interpretation of behaviors between agents and their graphical

representations. The design paradigm for NPSNET-V labels the created entity a Master.

The represented entity on a participating machine is labeled a Ghost. The Master

responds to its environment and others as defined by its behavior. The Ghost mirrors the

actions of the Master on remote, participating machines interested in the entity. A goal

of this thesis is to give the Ghost enough intelligence that it can realistically emulate the

6

behavior of the Master while minimizing network updates from the Master to the Ghost.

This must be balanced with the requirement for efficient use of CPU cycles. The

representative Ghost should not monopolize the computational capacity of machines on

which it resides which would violate the scalability requirements of NPSNET-V.

Research in this area would provide a lightweight solution that could be extended to a

myriad of military networked collective training simulations. See chapter VI for further

discussion.

3. Dynamic Behaviors

Most current networked applications must have prior knowledge of all entities

and their pre-scripted behaviors and animations. The protocols that call these events on

the Ghost representatives must also be known in advance. With NPSNET-V, protocols,

entities, and graphical representations can be created and added at runtime. All

participating machines can access these components as that machine gains interest in the

new item. If a new type of entity is created that has articulated limbs or fixtures, it can

still be accurately displayed in FishWorld. No prior knowledge is required. This

capability would have saved time, effort, and money in the above example of the

Longbow experiments. The application would not have had to be extended and

recompiled to include the capabilities of the Longbow. Adding new weapon types in

current military simulations requires that the software be modified, integrated,

recompiled and reloaded—which is often. This is needlessly expensive.

7

4. Networked Virtual Environment

Networked Virtual Environments are valuable tools for many tasks. The

graphical representation of environments allows users to visualize the problem space they

are interacting with. They are extremely useful for applications including design,

training, experimentation, testing, and entertainment. In developing new products,

interactions must be tested with other emerging technologies. The Longbow

experiments, for example, could have been conducted simultaneously from several battle

labs to test proper integration with other new developing systems. The technology of

NPSNET-V and FishWorld would provide this type interaction without the need for

extensive integration or the need to integrate heterogeneous applications into a

monolithic, inextensible, homogeneous one.

C. APPROACH

This thesis will culminate with the creation of a Networked Virtual Environment

hosting a multi-agent simulation of the Monterey Bay Aquarium Kelp Forest exhibit (see

http://www.mbayaq.org). The following paragraphs of this section describe the approach

that will be used.

1. Integrate RELATE with NPSNET-V Model, View, Controller

NPSNET-V uses the Model, View, and Controller design paradigm (Buschman,

1996). The model contains the state information of an entity (Figure 1 below). This

model may include positional, orientation, and physical data such as velocities and

8

accelerations. The view is the graphical representation of the entity. The controller is

what guides the behavior of the entity including computer control or user control through

use of the keyboard, mouse, or game controller. An entity instance will have exactly one

model. Several objects distributed throughout the entity object may compose this model,

but an entity can only be uniquely identified by a single set of state information and a

Globally Unique Identifier (GUID). Several entities may use the same model type, but

the instance of one model will uniquely identify a single entity. This entity may have

more than one view object over time—one for several, specific situations such as death,

fleeing, or swimming; but it will only have one view at a time. Other entities may have

unique instances of these same views as their graphical representation as well. The

selection of the specific view will depend on the state of the owning entity’s model. This

entity may have more than one controller as described above—keyboard controller,

mouse controller, or agent behavior.

 Figure 1. Model, View, Controller Design Paradigm.

For FishWorld, control is selectable. When under user control, the computer-

controlled entities should continue to interact with the user-controlled entity. The

Entity

ModelController
“has a”

Relationships
Roles
Goals
Rules

Actions

View

Keyboard Listener
Mouse Listener
RELATE Agent

X
Y
Z
Pitch
Roll
Yaw
Velocity

Dead View
Swimming View
Attacking View
Injured View
Fleeing View

9

RELATE Java library is a multi-agent architecture that uses a goal-based reasoning

decision-tree structure. The result of an agent’s reasoning is a simple action such as turn,

climb, or continue straight which provides autonomous control for agents. The challenge

is to create a cohesive design that also allows for a user to take control of entities. This is

a feature that provides vital extensibility for experimentation applications. In this type

application, an agent could be driven to a required location by a user for repeatable

scenarios to test new behavioral goal sets.

a. Create New Agent Types

To demonstrate the versatility of agent-based programming, a myriad of

divergent agents will be created. Agent types can be completely heterogeneous for all

applications that run on NPSNET-V. To demonstrate this capability both organic and

man-made simulated objects will be created. Interactions can still occur in this

amalgamated environment. This is important as a demonstration feature to prove

NPSNET-V’s use for military simulations or experiments. The type vehicles in military

scenarios are quite varied. To create a dynamic environment for FishWorld, predators,

prey, schooling agents, submarines, and surface ships all will be created—the more

heterogeneous, the better.

b. Add New Agent Behaviors

Some of the agent behaviors will include schooling, searching, fleeing

from predators, attacking, and others. The architecture of RELATE gives an agent that

implements it a container of rules that it can use. A large set of rules will be constructed,

10

and varying which specific rules an agent has access to will create variations in the

agents. This set of rules is not the limit that a new entity type can use. Entities can

extend and modify these standard rules. This is important in a test of NPSNET-V’s

usefulness, because secondary and subsequent iterations of any system often add features

and capabilities. These new capabilities could simply be modeled by the dynamic

behavior capability of FishWorld and NPSNET-V.

c. Agents’ Distinct Personalities

An agent hierarchy of dominance should not be predetermined.

Dominance is something that agents should learn and adapt to. Additionally, this

flexibility better suits the architecture of NPSNET-V. When new agents are added

dynamically, this adaptability will allow agents to survive and learn about the newly

created environment. To make interactions interesting, the individuals of a species have

unique propensities for certain behaviors. These personality traits should have

advantages, but should also have disadvantages. The desire to follow others in a school

very closely should provide the protection afforded by being deep in a school, but

possibly result in increased injury due to increased collisions with others. Increased

aggressiveness should allow an agent to arise as a leader in a school, but this arrogance

should make it more likely to be attacked. Personality traits in fish include

aggressiveness, leadership, closeness, blindness, hungriness, and others.

The abilities of this technology are very powerful. During the description

of the Longbow experiments in the previous chapter, employment principles were

11

analyzed. An autonomous Longbow agent could have been given a personality that

described the adjustable features of the Longbow experiment. Many capabilities of the

Longbow represent a trade-off. For example, if more weapons are carried, the aircraft

can kill more, but has increased weight and decreased flight performance, and can be

killed more easily. Several autonomous Longbow agents could be given distinct

personalities and exercised in a simulation. The scores of the participating agents could

represent the best solutions for Longbow development.

d. Genetic Algorithm Replicates Natural Selection

Many multi-agent simulations use an objective function to grade the

actions of the participating agents. Based on the results of this objective function, an

agent could change its active goal, rule, personality, or action. The agents in FishWorld

can be harmed by collisions with other agents, collisions with the wall, and attacks from

predators. When an agent dies, it is reintroduced with changes to its personality traits.

The new design will be the result of a genetic algorithm run on the best two surviving

agents of the same type—the parents for the new agent. This life and death struggle will

act as the objective function. Using a genetic algorithm will be the basis for the

adaptation. Introduction of mutations will ensure that new personalities can continually

be discovered.

The use of a genetic algorithm would be a vital step to creating the next

trial agent version in an ongoing experiment. The failure of an agent during an iteration

of a multi-agent simulation is simply an opportunity to create the next generation agent.

12

This type failure mode in a military-type experiment is realistic—destruction of a vehicle

can represent failure of a tactical strategy or vehicle capability. An objective function

can also be used to grade the performance of an agent, because destruction may also

occur on a successful entity. The more iterations of a simulation that are run, then the

better the results of the experiment are likely to be. The objective function and genetic

algorithm are highly tailored able for each application.

2. Creating New NPSNET-V Applications

After the agents are up and running, the second challenge is to implement

interfaces that any newly created application can use to run on NPSNET-V. These

interfaces must be fairly robust, because the possibilities for interactions between objects

in the NPSNET-V virtual environment are completely unlimited. Newly created entities

must be able to be added to any new virtual environment. These agents must be able to

ask questions and gather information about the environment. They must be able to be

affected by physical effects like wind or water currents. They must be able to ask

questions of other agents within their sensing range in order to allow for interactions.

These interactions need not be limited to only collision avoidance or collision detection.

The creator of a new virtual environment on NPSNET-V gets to be the architect for these

interactions in his world.

Creating a general interface that any NPSNET-V application can use to solve

collision detection issues with the environment and physical interactions that act upon

participating agents greatly increases the capability and extensibility of NPSNET-V. The

13

interface would allow agents to learn about their environment. Many experiments that

extend the capabilities of this thesis could simply tailor the physics to match those of

their experiment. This could prove useful for tests of a vehicle to land on Mars or the

moon, tests of an amphibious vehicle that operates on land and sea, or test of a tilt-rotor

vehicle that operates like a helicopter and an airplane.

3. Proof of Concept: FishWorld

FishWorld is a fully dynamic, scalable, networked application that creates a

realistic, virtual underwater environment. It is a combination of this virtual environment

with an interactive multi-agent simulation architecture, which supports a large number of

dynamic, heterogeneous entities with complex, adaptable, and interactive behaviors.

FishWorld is the backdrop for interactions between a myriad of autonomous and user-

controlled agents of varying types, each with unique personalities. This application is

designed to test the capabilities of NPSNET-V. It is highly scalable, and will be able to

host a large number of heterogeneous agents. New fish types will be able to interact with

any other entity in the aquarium. The agents will be able to interact with the

environment, be affected by currents, and be affected by environmental collisions.

FishWorld’s agents will adapt and evolve as new interactions are created. No one entity

type will be able to dominate the others in this virtual world as long as the architect of

these entities builds in robust learning and adaptation.

14

This thesis will prove that an application can be constructed that allows for

experimentation of dynamically loaded entities, dynamically discovered interactions,

self-tuning behaviors and attributes, and entity adaptations and behavior modeling.

D. PROBLEM

There are several challenges that have been resolved for correct modification of

NPSNET-V to allow for successful implementation of FishWorld.

1. How to Give RELATE Behaviors to NPSNET-V Entities

RELATE and NPSNET-V are quite separate architectures with different purposes.

The main challenge is finding the best way to merge them into an extensible, cohesive

package.

2. How to Extend the Features of NPSNET V

NPSNET-V entities can be created and added dynamically at run time. The

components of these entities include the Master, Ghost, View, Controllers, and any

unique protocols that define the entities’ behaviors. Some problems areas to consider are:

a. How to Interface with Dynamically Added Agents

Hooks must be built to allow different FishWorld entities to interface with

the resident autonomous agents that are instantiated at startup. These hooks must be

robust enough to allow for emergent behavior, adaptation, and encourage learning.

15

b. How to Solve Collision Detection with a Complex Environment

While creating FishWorld, the interface that allows agents to learn about

the environment should be extensible to numerous applications. In addition to solving

collision detection inquiries, this interface should be useful for relaying physical

properties of the environment such as water currents.

c. How to Solve Convergence and Dead Reckoning for Ghosts

In FishWorld, fish agents in a tight school may make several turns a

second to stay in the school while avoiding collisions with others nearby. Sending

packets at frame rate would violate the scalability goal of NPSNET-V. A solution must

be devised that limits the number and size of packets sent per second. The dead

reckoning schemes of the Ghost must be robust enough to interpret these packets and

move realistically. The convergence algorithms must ensure smooth transitions toward

corrected position updates. This behavior must meet the additional requirement of not

monopolizing the CPU.

3. How to Create a Realistic Underwater Environment

Virtual environments should provide a realistic scene that causes the viewer to

feel presence and immersion. The created scene must be captivating enough to

encourage others to participate by creating entities of their own.

16

a. How to Solve Physics of Fish Including Aquarium Wave Motion

A decision by an autonomous agent must be turned into an actual step.

This decision may translate into an action to turn left or right or to continue straight. The

agent may want to accelerate, decelerate, climb or descend. A goal-derived decision to

flee from a predator, for example, must be translated into one of these actions.

Additionally, the currents of the Monterey Bay Aquarium and other physical forces must

affect this action of Masters and Ghost.

b. How to Create Realistic Kelp

Swaying, flowing stalks of kelp dominate the Kelp Forest exhibit in the

Monterey Bay Aquarium. The Kelp Forest Exhibit Modeling Project,

http://web.nps.navy.mil/~brutzman/kelp/, uses a simple, polygon-expensive VRML

model to represent the kelp. Collision detection or collision avoidance with several

FishWorld entities would be very CPU-intensive for such a model. A more dynamic

model that avoids these high costs is required.

c. How to Create Realistic Underwater Environment

Underwater environments dynamically alter light in fantastic ways.

Surface waves create caustics that create a shimmering light show on nearly every visible

object in an aquarium. Light shinning through the waves creates a unique light show.

Water creates reflection of surface objects. Water acts like a blue filter affecting

visibility and brightness. These effects must be simulated in a realistic way.

17

E. THESIS ORGANIZATION

The remainder of this thesis is organized as follows:

Chapter II, Background: This chapter contains the requisite background

information that supports this thesis. This information includes a description of the

capabilities of and technologies used by NPSNET-V. This description is required

context, because the proof of concept application executes NPSNET-V to provide

network connectivity and dynamic entity discovery. Multi-Agent Simulations (MASs)

and their numerous capabilities are described. Example MASs and their contributions

that have provided direction to this thesis are presented. Related Monterey Bay

Aquarium modeling projects are also given credit, because many of these components are

reused in a proof of concept application, FishWorld.

Chapter III, Integrate RELATE with NPSNET-V Model, View, and

Controller: This chapter describes the autonomous control of entities participating in

NPSNET-V. This description includes a detailed study of autonomy and the many

interactions of agents in the proof of concept application. Additionally, how this control

is integrated into the Model, View, and Controller design is described. The purpose of

this chapter is to assist the reader with rapidly creating new entity types with autonomous

behaviors.

Chapter IV, Creating New NPSNET-V Applications: This chapter describes

the major software engineering contribution of this thesis. The purpose of this chapter is

18

to provide the reader enough information, so that this reader can rapidly create new

virtual worlds and entities for use in NPSNET-V, which can host an unlimited number of

virtual worlds.

Chapter V, Proof of Concept: FishWorld: This chapter describes the specific

contributions of the proof of concept application, FishWorld. Many of the features and

design challenges are detailed to provide the reader ideas and solutions for the creation of

new NPSNET-V virtual worlds.

Chapter VI, Conclusion: This concludes the thesis by summarizing

contributions, reviewing design challenges, and providing direction for the creation of

new, participating virtual environments. Additionally, this chapter describes areas that

require continued effort and study. This chapter will encourage other students to

participate in expanding the already formidable capabilities of NPSNET-V.

19

 II. BACKGROUND

This chapter contains some requisite background data to create the proper context

for this thesis. A description of the technologies used by NPSNET-V is provided to

enhance the understanding of its capabilities. Only by understanding these technologies

can an interested participant implement new virtual environments to run on NPSNET-V

that fully leverage the entire range of features. After a brief definition of Multi-Agent

Simulation (MAS), three example MASs are described because of their specific

contributions to the proof of concept application. The final background topic is a

description of various three-dimensional graphical modeling languages that can be used

by NPSNET-V to render EntityViews. This is required because NPSNET-V is platform

and graphics standard independent.

A. TECHNOLOGIES

To avoid recreating solutions to preexisting problems several technologies are

used to create a proof of concept application for this thesis. MASs are an emerging

technology with far-reaching applicability. It is useful for conducting experiments or

simulations in situated (three-dimensional) and non-situated environments. RELATE is a

Java library, developed by Kimberly Roddy and Michael Dickson at the Naval

Postgraduate School, which is useful for implementing MAS in which participating

agents conduct goal-based reasoning (Roddy and Dickson, 2000). A genetic algorithm is

a software process for creating new agents in MAS. In order to see the results of situated

MAS, a graphical representation is best. The proof of concept application uses Java3D

20

and VRML in order to accomplish this representation and interaction. All of these topics

are discussed below.

1. Multi-Agent Simulation

Multi-Agent Simulations are containers for the interactions between autonomous

agents. MAS provides the environment, situated or non-situated, and the rules that

govern how the agents interact with each other and with this environment. Many MAS

assign decision trees to each autonomous agent to conduct decision-making. Each agent

is either assigned or chooses the best goal (the top of this data structure) to follow based

on the current situation. Many MAS applications use an objective function to grade the

performance of the autonomous agents. Agents can be instructed by the MAS to change

their behavior if they start behaving poorly. This is the source of adaptability of agents in

MASs. Due to these factors, MASs can be used to model complex environments, solve

for complex algorithms, or explore emergent behavior (Ferber, 1999).

2. RELATE

RELATE is a way for an autonomous agent to implement actions in a Multi-

Agent Simulation. RELATE is a Java library that contains interconnecting interfaces

that, when implemented, creates a goal-based reasoning decision tree. The architect that

uses RELATE can select an appropriate goal for decision determination based on weight

assignments or on situational events. This architect can also have RELATE automate the

selection of the active goal based on active relationships between two or more agents.

21

This makes RELATE a very powerful library, because it can be used to effectively model

the relationships between interacting components in any simulation (Roddy and Dickson,

2000). The environment being simulated can be situational in 3-D space or non-

situational.

RELATE is an autonomous-agent design-paradigm using a goal-based decision

tree for action-determination (reasoning). This decision tree is a directed graph.

“Active” nodes represent the path taken through the graph. These “active” nodes know

about the selectable, children nodes below them. Unless directly assigned by a higher-

ranking agent, parent nodes choose the best child node to create an optimal path through

the decision tree.

3. Genetic Algorithms

Genetic algorithms are software processes that mimic the genetic combination of

two biological, parent organisms into one or more offspring during reproduction. Alleles

are segments of genetic material in biological organisms that determine a propensity for

certain behaviors or physical attributes. These alleles exist in an ordered sequence

comprising the organism’s genetic material. Different species of organisms may have a

different sequence and numbers of alleles, but multiple instances of the same species will

have the exact same number of alleles and the same sequence. The differences between

like-species organisms occur in the genetic material that comprises each allele. During

biological reproduction, the process generates a unique set of alleles for the offspring.

This set of alleles has the exact same sequence as both of the parents, but is constructed

22

by a random selection of one of the two parents’ alleles. The change of alleles from one

parent to the other is called crossover. The number of crossovers can equal the number

of alleles in a species’ sequence or be fewer.

 Figure 2. Genetic Algorithm.

Just as in biology, software genetic algorithms can combine the alleles of two

software agents and create a new agent. The only requirements are that the agents be

constructed in a way that their personalities (propensity for certain behaviors) are

described by software alleles, and that the exact same allele types and sequence describe

the two mating agents. Genetic algorithms select alleles from two parents and create

genetic material for new offspring. The selection may undergo a random pattern of

crossovers between these two parents for each allele in the sequence. The final

combination can suffer genetic mutation at a rate determined by the programmer (see

Alleles: 1-p

Alleles: 1-n

Alleles: 1-m

Autonomous Agent

Intent

Intent

Intent

Active/Inactive

Objective Function

Reproduction

Crossover

Mutation
000111111001011

010111111001000

100110101101011

23

Figure 2 above). Genetic algorithms can ensure survival of the fittest as in nature if the

objective function used to select parents is well designed (Fisher, 1958). The

introduction of mutations ensures that new personality types can be discovered (Von

Neumann, 1966).

4. Java3D

Java3D™ is a Java-based library for modeling 3-D scenes. Compiled Java3D™

classes can be passed as bytes across network connections, reassembled on the other side,

and executed on the receiving machine by the resident Java Virtual Machine, regardless

of platform (Gosling and McGilton, 1996). Java3D™ organizes objects in the 3-D scene

into a scene graph. Loaders exist that can load scene graphs constructed from a variety of

graphics file formats. All of these features make Java3D™ a good choice for Networked

Virtual Environments (Stapleton, 1997). These features are also what make dynamic

entity loading possible. The ability to transport a graphical representation of an entity

over the network, reassemble on the remote machine, and run is critical to NPSNET-V.

5. VRML

VRML stands for Virtual Reality Modeling Language. VRML is a 3D modeling

language that can be viewed in web browsers with the correct installation of required

plug-ins. As described above, Java3D can load scene graphs that have been constructed

in other languages. VRML is one such language. With the correct loader, VRML scenes

can be loaded and added into any Java3D scene graph. VRML uses a construct similar to

24

the scene graph used by Java3D. The VRML loader used by Java3D is essentially a text

parser that reads through the VRML text file and adds the closest-corresponding Java

constructs to the loading scene graph (Day, 1999). This feature allows participants of

NPSNET-V virtual environments to draw graphical representations from existing

repositories and libraries for the creation of new entities (Brutzman, 2000).

B. RELATED WORK

There are several completed applications and research areas that provide

extensively tested solutions for areas of this thesis. For example, NPSNET-V uses

technology similar to that used by the Internet to connect to a web page using a URL

(Uniform Resource Locator) without prior knowledge of the page’s physical location.

This technology is used to implement dynamic entity discovery in NPSNET-V. The

proof of concept application, FishWorld, relies on solutions to problems in other Multi-

Agent Simulations—specifically: El Farol, Boids, and Capture The Flag.

1. NPSNET-V

NPSNET-V (Capps, 2000) is the basis for this thesis work. Its capabilities are

what will be extensively explored in creating FishWorld. The mechanics of the

NPSNET-V system are described in detail below.

a. Lightweight Directory Access Protocol (LDAP)

To ensure the ability to load and display heterogeneous entities and

numerous different virtual environments, NPSNET-V uses a component-based

25

architecture. To provide the capability to dynamically discover and load new entities,

this architecture additionally requires a system for storing and retrieving components.

Because a single component storage server creates a single point of failure, replicated

component storage servers are required. In the event of a server failure the components

are retrieved from a replicated server to where data has been automatically copied. This

also allows implementers to load-balance component storage/retrieval across several

servers to support several users requesting to download a newly appearing entity

simultaneously. This capability provides the requisite support to implement a large-scale

virtual world.

 Figure 3. NPSNET-V LDAP Directory Server.

To avoid creating a system to meet these requirements, an existing, open

standards solution, Lightweight Directory Access Protocol (LDAP) is used (Yeong,

1995). In addition to performing storage/retrieval services, LDAP provides a naming

LDAP
directory server

Message

What is a SHARK? or”

or”

N
P

S
N

E
T

-V
A

pp
li

ca
ti

onEntity PDU

26

service, which uses URL (Uniform Resource Locator) references to locate the stored

components. Currently, the latest NPSNET-V release, which relies on a single server,

does not support the replication of component storage servers. When a virtual world

discovers that it must load a component it provides the LDAP server with a URL, and the

LDAP server replies with the requested component data (Hodges, 1997).

NPSNET-V uses an LDAP server with the functionality described above

to host entities. In order to load entities at run time, the URLs to the entities Ghost, View,

and protocols are registered with the LDAP, so that receivers of packets for this entity

can download and display the entity. Figure 3 above depicts the dynamic loading of

entities using this service.

b. Entity Dispatcher

The NPSNET-V entity dispatcher works closely with the LDAP. When

the entity dispatcher receives a new packet (see Figure 4 below), it attempts to find the

entity to which the packet is addressed on the local system. If the addressee is not

registered with the entity dispatcher, the entity dispatcher asks LDAP for its Ghost and

View components. The URL posted on the LDAP provides the path for these objects to

be serialized and transported across the net to the requesting machine. Entity dispatcher

now registers the new entity and is able to pass packet information to it. Entity

dispatcher notifies the application that a new entity has been registered. This exact same

process is followed for new packet types as well. The LDAP works hand-in-hand with

27

entity dispatcher to provide dynamic entity discovery and dynamic behavior discovery

(McGregor, 2001).

 Figure 4. Entity Dispatcher Receive Sequence.

c. Area of Interest Manager

In order to meet the requirements for high scalability, every listener cannot

receive every packet for all entities. NPSNET-V implements a packet filter that works

dynamically by dividing the world into several areas of interest called zones. A listener

in a zone only receives packets from others that are located in the same zone. When this

area of interest becomes overwhelmed by network traffic, the NPSNET-V area of interest

manager will divide that area into smaller areas of interest dynamically. Each area of

interest will have a unique multicast channel to accomplish this. The area of interest

28

manager manages the distribution of multicast channels and allocating areas of interest

for each entity (Wathen, 2001).

d. Dynamic Protocol/Entity Discovery

New Entities can be added to the system, and Entities are composed of

Model, View, and Controller components. The LDAP server can store information about

these new components. All the user must do is host the Java serializable code on a web

server and assign the URL to the component— a subclass of EntityGhost, EntityView, or

Protocol. When the component is registered with the LDAP server, every interested

machine can download the new instance and display the Entity or behavior (McGregor,

2001).

e. Dynamic Network Optimization

In order to support the requirements for scalability to a large number of

participating entities, NPSNET-V implements several strategies that will reduce network

traffic to a manageable level. Reducing data precision can reduce packet sizes on the fly

(floating-point precision data replaces double-precision data, etc.). This filtering can be

turned on dynamically as network bandwidth usage increases. As already described, the

world can be divided into smaller and smaller areas of interest, so that no single area of

interest becomes overwhelmed by network traffic regardless of the number of entities in

the overall world. The final method of managing network traffic is to implement

different strategies for dead reckoning. If the network is far from full capacity, the

entities may send packets to listening Ghost representations at frame rate. This will

29

provide high fidelity motion for the Ghosts, making their actions correspond more closely

to the Master’s. As the network starts to become loaded, the entities can shift to a lower

fidelity mode in which the Ghost performs dead reckoning between packets.

2. Kelp Forest Modeling Project

A 3-D model of the Monterey Bay Aquarium Kelp Forest already exists. This

project modeled the tank and the fish in VRML. It is not dynamic and does not allow for

dynamic interaction (Brutzman, 2001). This environment does provide many realistic

models of the aquarium and fish that could be integrated into the FishWorld virtual world

proof of concept application for NPSNET-V.

a. Static Path Animation

The motions of all the fish in this environment are pre-scripted path

animations. Although a viewpoint can be changed, the behaviors of the fish never

change. There is no dynamic interaction between entities, and new entity types cannot be

added at run time.

b. Static Environment

The motions of the environment are also all pre-scripted. The

environmental affects such as currents and collisions have no impact on the motions or

the interactions on the entities. To provide a realistic virtual environment, new entities

should be capable of this basic level of interaction.

30

3. Capture the Flag

A dynamic 3-D virtual environment populated by autonomous agents exists. The

name of this application is “Capture the Flag” (Brutzman and McGregor, 2000).

“Capture the Flag” has some interesting capabilities, but it does not have the dynamic

extensibilities of NPSNET-V. It lacks dynamic entity discovery. The agents that operate

in the simulation are not capable of interacting with new agent types. Here are some

capabilities of “Capture the Flag”.

a. Distributed Interactive Simulation

“Capture the Flag” is a networked multi- agent simulation. It incorporates

a package called DIS-Java-VRML. DIS stands for Distributed Interactive Simulation. It

is a standard created for military simulations and contains about twenty-seven Protocol

Data Units (PDUs). The Java application simply transmits DIS Entity State PDU packets

for each entity. Each entity’s view is a uniquely identified node in a VRML scene graph.

The node listens for packets assigned to its entity. The node manipulates the attaching

transform to correspond to the data in the packet. This is essentially a version of the

Model-View-Controller design pattern. The use of the Model-View-Controller design

pattern ensures appropriate data encapsulation (Brutzman and McGregor, 2000). The use

of dead reckoning is a feature of DIS protocols, which allow the Ghost representations to

continue moving in the absence of update packets. The DIS protocols are considered

heavyweight, however, and carry considerable overhead as part of packets.

31

b. Multi-Agent Behaviors in Capture the Flag

The multi- agent behaviors in Capture The Flag are written using the

RELATE Java library. The use of RELATE provides a robust interface to designing

dynamic interactions between agents. The agents are arranged into two teams—red and

blue. This forms the relationship at the top of the RELATE decision tree. All blue

agents are able to form “blue team” relationships. Roles are assigned based on this

relationship—squad leader or squad member roles. The squad leaders can assigns goals

such as attack or defend to squad members. The members then implement the

appropriate rule to satisfy the active goal.

4. El Farol

El Farol is a multi-agent simulation design problem. It is often used as the first

multi- agent programming assignment for students because it involves simple yet

fascinating interactions between agents. Brian Arthur designed this problem in 1994

(Edmonds, 2001). A population of agents must decide whether to go to the El Farol bar

each Thursday night. No agent likes to attend the Thursday night revelry if the bar is too

crowded (i.e. more that 60% of the agents show). Therefore every agent independently

predicts what the attendance will be. Agents maintain a single active predictor from a

container of many. If an agent chooses, this predictor may be discarded and replaced by

another. Modeling the problem to allow previewing the predictions by a preponderance

of the agents would be self-defeating, because as the average of the previewed

predictions falls below 60%, attendance would be high, causing the bar to be

32

overcrowded (Edmonds, 2001). Modeling the El Farol problem creates agents that adapt

their behavior. The interactions between the adapting agents lead to the creation of

dynamically emergent behavior. Both of these properties are important characteristics of

the proof of concept application.

a. Adaptable Behaviors

El Farol uses an objective function to grade the participating agents.

Agents that are performing poorly are instructed to change their active rules, while agents

that are performing well maintain their current active rule. All El Farol agents have the

exact same goal (to attend the bar); it is only the active rule (predictor) that changes, so

there is essentially only one level in an El Farol agent’s decision tree. When an agent

upgrades to a new rule, it is the best performing rule at the time. This causes rules to

continually rise and fall in performance and to continually be selected and deselected as

active rule. This variance is adaptability.

b. Dynamic Emergent Behavior

As a rule increases in scoring due to improving accuracy, more agents

select this rule as the current active rule. The switch to this rule by several agents causes

this rule to lose effectiveness. If a majority of the agents have the same action, the main

goal is violated. This cycle allows other rules that were performing poorly to start

improving and increase in popularity. The behaviors of an individual agent affect

interactions between the other agents participating in the simulation. This cause and

effect relationship can create complex results that are difficult to predict. This is the

33

essence of dynamic emergent behavior. This can become even more complex if multiple

goals are selectable instead of only one as in El Farol.

5. Boids

Boids is a multi- agent simulation problem of coordinating birds into a flock. The

study of dynamic flocking behavior precedes the SIGGRAPH '87 Conference (Reynolds,

1987). The problem is to have the birds flock while avoiding collisions with each other

and avoiding collisions with the environment. The dynamic emergent behavior that

evolves from this simulation could answer several questions about bird behaviors. Birds

get close enough to flock without knocking into each other. An entire flock avoids

obstacles and remains a flock. Birds in a flock do not agree to a specified formation or

communicate intentions. Modeling this level of complexity is the interest in

implementing Boids. This is an interesting study for the implementation of FishWorld.

The fish agents will participate in schools that are quite similar to flocks. Each involves

complex interactions in three-dimensional space.

a. Flocking Behavior

This seems simple at first. If two birds see each other, then they should

fly toward each other. You could alternatively have one bird mirror the other. If two

birds start flying together, they may collide, though. If two birds start mirroring each

other then they may simply fly around circling each other—each trying to mirror the

movements of the other. Three steering behaviors have emerged in the study of flocking

to coordinate individual bird’s motions. In one algorithm, birds mirror the heading of the

34

average of the closest birds in the flock. This technique is called alignment. In another

algorithm, they always want to be in the center of the flock and are, therefore, always

heading for the center. This technique is called cohesion. In the final algorithm, a bird

will turn to avoid crowding the closest members of his flock. This technique is called

separation (Reynolds, 1999). As birds ebb and flow in the currents of the flock,

collisions with each other must be avoided. This is vitally important, because these

collisions could cause injuries. Some models of the flocking problem compute the result

of each of these three algorithms and move the boids a distance and direction equal to the

average. Other models assign an importance ranking for each algorithm and move the

boid a distance and direction equal to the result of the highest ranking one.

b. Terrain Avoidance

The description of the complexity of the flocking behavior has not yet

considered what occurs when an impact with an obstacle is imminent. This event could

most likely kill the bird, so this goal should have a high importance value. It is possible

to avoid a collision while maintaining a flock. Predictive obstacle avoidance provides the

simple solution. As lead boids of a flock observe approaching obstacles, predicting

avoidance provides them steering commands around the obstacle. By simply following

separation, cohesion, and alignment, follow-on boids will be guided around the obstacle

while maintaining a cohesive flock. Boids that are not guaranteed clearance around the

obstacle will conduct predictive obstacle avoidance. In this way, the flock may split into

groups to negotiate the obstacle.

35

C. CONCLUSION

Only by understanding these topics can the full scope of this research be realized.

NPSNET-V relies on the technology provided by Java, LDAP, VRDNS, and the Internet.

FishWorld relies on the technology of NPSNET-V, Java3DTM, and Multi-Agent

Simulations to create a dynamic networked virtual environment hosting a myriad of

dynamic, heterogeneous autonomous agents. An application such as FishWorld has the

potential for far-reaching capabilities due to being constructed on such a foundation of

these components. The aim of this research is to demonstrate the synergy of combining

these technologies into a single application.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

 III. INTEGRATE RELATE WITH NPSNET-V MODEL, VIEW,
CONTROLLER

Because of the distributed nature of NPSNET-V it is vitally important to

incorporate sound principles into the design of virtual worlds and entities. By using the

well-proven technology of the Model-View-Controller (MVC) pattern for the

implementation of entities in NPSNET-V, development time and testing decrease when

reuse increases. The ability to load individual components for the dynamic creation of

entities from the repository stored on the LDAP servers is being considered. By selecting

separate MVC components from the repository of entities created with these three

components, new entity types can be constructed without a single line of new code being

written. For entities written with autonomous behaviors, it is critical that these behaviors

be correctly incorporated into MVC pattern. Only by this technique can the correct

implementation of these behaviors be available for the component creation of entities.

This chapter describes one correct design.

A. RELATE IMPLEMENTATION

The proof of concept application, FishWorld, is created using the RELATE

library. The top of the RELATE tree defines the active relationship of the agent. The

Relationship node in the decision tree in RELATE actively searches to form relationships

with other agents that are within sensor range. This works very well for several

applications. In many of the combat models built upon RELATE, knowing which side an

agent represents is very important. A friend or foe relationship forms at the top of the

38

decision tree for these type applications. Relationships are restricted from forming where

they cause violations. This would occur if a RedRelationship attempted to join a

BlueRelationship if red and blue represents opposing sides. The next node in the tree is

the Role. In the applications that model leadership, roles could represent the appropriate

rung in the hierarchy of the chain-of-command. A company commander role could issue

platoon leader roles. Platoon leader roles would assign squad leader roles. Squad leaders

would issue squad member roles. Every agent will have exactly one active role.

 Figure 5. RELATE Decision Tree.

The next node in the tree is the Goal. The chain of command can use a goal

structure to accomplish a mission. The company commander may decide to attack. He

could issue this active goal to the few platoon leaders. The platoon leaders could issue

Actions

Straight
Right
Left

Hover

CompanyCommander
Role

SquadLeaderRole

AttackGoal

Suppress
Goal

PlatoonLeader
Role

OverwatchGoal BoundGoal

FireGoal

Defend
Goal

ChargeEnemy
Rule

ReturnFire
Rule

StandGround
Rule

FleeFromEnemy
Rule

SleepRule

EatRule

GuardRule

DessertRule

BlueRelationship

39

goals such as bound or provide over-watch to squad leaders. Squad leaders could issue

active goals to the squad members such as attack, rush forward, or fire weapons. If active

goal selection is not accomplished by assignment by a higher-ranking agent in the chain

of command, then the agent’s current active role simply assigns it. A container of

possible goal choices are maintained in each role. Goal objects maintain a container of

possible rule choices. The current active goal makes a decision which rule to use to

satisfy this goal in the same way the active role decides which goal best satisfies the

assigned role.

Based on the active goal, an individual agent will perform a rule that

accomplishes it. The commander’s active rule may be to issue commands or to move to

stay in a position to control the company. A squad member may have the rule to kill an

individual enemy soldier, to run to a hill, or to follow the soldier in front of him. The

active Rule ends the decision process be simply picking the best action to accomplish the

rule. This action may be to turn left, right, or continue straight.

B. NPSNET-V

The design of the MVC pattern provides the proper data encapsulation to easily

model intelligence for NPSNET-V entities. The RELATE implementation in FishWorld

essentially becomes the controller for the resident FishWorld EntityMasters. NPSNET-V

EntityMasters have a different set of controllers than EntityGhosts. EntityMasters

determine the behavior of an agent and all the representative Ghosts. EntityGhosts

employ techniques that attempt to replicate a Master’s motions and animations (Ghost

40

dead reckoning). Those algorithms that allow a Ghost to mirror a Master will be a

controller on a Ghost. In NPSNET-V, shared state information between EntityGhosts and

EntityMasters is passed through the use of protocols that are sent over the network. The

controller plugs into the owning entity to set and change state information in the model

by interpreting received protocols. EntityMasters may have a different set of state

attributes (different model) than their representative EntityGhosts. After completing the

agent implementation, the first problem was to insert this controller into an EntityMaster.

The subsequent challenges include designing and integrating the controller for the

EntityGhost.

1. RELATE Agent to NPSNET-V EntityMaster

 Figure 6. FishWorld EntityMasters

41

The design of the RELATE decision process has been described in great detail but

the EntityMaster design must also be described. The state information that is shared

between FishWorld Masters and Ghosts is described by an interface called FishInterface.

The use of the FishInterface allows the resident autonomous agents to interact with any

entity in the same area of interest—Ghosts or Masters. In order to collision avoid or

school with other entities, spatial knowledge is required. Entities only school with others

of the same type. These are two examples of the type information provided by

FishInterface implementation.

 Figure 7. EntityMaster Design.

The Master, called FishMaster, forms a “has a” relationship with the RELATE

Agent (controller), called an Agent3D (Figure 6 above shows this relationship). The

Agent3D implements a RELATE Agent (“is a’ relationship). Additionally, because the

Agent3D understands user-control and autonomous control, the Agent3D solely

EntityMaster

“is a”
RELATE Agent

Relationships
Roles
Goals
Rules

Actions
“has a”

Keyboard Control
Mouse Control
FishMover

x,y,z…

FishMaster

Model
FishInterface

Controller
Agent3D

View

FishView

“has a”
Version
URL

Agent3DMaster

42

encapsulates the entire controller object of the MVC design (see Figure 7 above). The

Master, therefore, forms a “has a” relationship with the controller in FishWorld. The

requisite world coordinate knowledge is entirely contained in an object called FishMover.

Because the implementation of the RELATE Agent encapsulates spatial knowledge of

the environment, other agents, and self, the Agent3D controller is responsible for

maintaining and updating positional and orientation data for the FishMaster.

Logically, this spatial knowledge should be assigned to the model—not the

controller. The described encapsulation was chosen, because of the tight cohesion

required between the controller object and spatial knowledge. It is important to reduce

overhead where possible to support the scalability requirements of NPSNET-V. The

controller inquires about local coordinate position and orientation at frame rate; so

function calls should be minimized. For this implementation, part of the model is

essentially distributed to the controller. This description is not a violation of the Model,

View, and Controller design, because many chunks of the model may be encapsulated

into separate objects. The model could easily be distributed across many classes.

The drawback to this approach is the impact to future work on the NPSNET-V

research project. A future capability is the dynamic creation of entities. Because entities

are stored on the LDAP server, it is possible to introduce entities into a virtual world by

using the dynamic loading capabilities. If these entities use the proper encapsulation with

separate components for the Model, View, and Controller, mixing and matching plug-able

components could create new entity types.

43

The FishMaster also “has a” view object called the FishView. This is described

in greater detail below.

2. NPSNET-V EntityGhost

A Ghost is downloaded from the hosted http server from the link passed by the

LDAP server to the entity dispatcher when the first packet update is received for this

entity. The Ghost is deserialized and instantiated using the class loading capability of

Java. The Ghost objects created for FishWorld implement FishInterface—the same

interface that Masters implement. This will ensure that the resident Masters can interact

with Ghosts—behaviors including schooling, attacking, fleeing, etc. In addition to

providing a way for all agents in FishWorld to learn about others, FishInterface

represents the state variables (model) that are shared between a Master and its

representative Ghost. Passing this shared model from Master to Ghost every time there is

a change is one way to update the Ghost. Passing the full FishInterface data structure at

frame rate for more than a handful of agents would cripple the network on which it was

running by consuming too much bandwidth. Simply passing the position and orientation

data would have the same effect even though only position and orientation data changes

at frame rate. Ghosts must represent their Masters well without heavy dependence on

rapid updates and without monopolizing the CPU. There are two aspects to the Ghost’s

controller to ensure this accuracy without the overhead of sending the model component

at frame rate: autonomous control, and protocol interpretation.

44

It could be possible to entirely replicate the multi-agent behavior on the Ghost -

side, but this would clearly violate the principles of scalability for large agent

participation. If one hundred agents were in the same region, thrashing would likely

occur between the competing threads. There could be tunable behavior for the Ghosts. A

high fidelity autonomous behavior controller (close to the fidelity of the Master) could be

used until threads run out of CPU. This could be the trigger to switch to a lower fidelity

autonomous behavior scheme. The lowest fidelity autonomous behavior may simply

provide predictions about changes. This work is not within the scope of this thesis;

additional consideration is given to this requirement in Chapter VI.C, “Future Work”.

The lowest fidelity scheme and the one implemented in FishWorld could simply

rely on steering commands and computation of dead reckoning schemes. When a Master

turns, the new heading, velocity, and pitch angel are sent. The Ghost maneuvers to match

these values and continues along this new vector until the next packet is received. If no

steering commands are received the agent continues straight by proceeding along the last

heading and velocity received. The final piece of the controller for the Ghost executes its

own collision avoidance with the environment by asking the application for the

boundaries to the local world.

The interpreting of protocols from the Master forms the basis for the controller

component of the Ghosts. This interpretation results in updates to the model component.

When a packet is received that contains update information for the Ghost, the protocol

calls applicable methods. SteeringCommand protocol calls a steering command to update

45

new azthmith, pitch, and velocity state information. FishInterface protocol calls set

methods on all the applicable state information. Having the Ghost snap to the correct x,

y, z position of the FishInterface protocol would usually present unacceptable results.

Instead the Ghost smoothly converges to the updated position. This is accomplished by

taking the difference between the current and updated positions and adding a portion of

this difference over the next several frames until the whole amount has been added in.

This causes the Ghost to smoothly converge to the correct position.

The design of the Ghost correctly implements the MVC pattern. Part of the

controller is any multi-agent behaviors that have been given to the Ghost entity. The

autonomous behavior controller knows how to ask the application for information about

the environment—questions that ensure collision avoidance with the environment. The

other part is any protocol interpretation. The model component is correctly encapsulated

in a separate data structure called FishInterface. As described above, this interface

represents the shared model components between a Master and its Ghosts. The spatial

and orientation data is encapsulated in a FishMover object located in the model

component. This object was located in the Master’s controller component. It was

possible to maintain strict adherence to the Model, View, and Controller design (see

Figure 8 below) in this case because of the lower fidelity autonomous control of a Ghost.

A Ghost would only be using autonomous control when CPU utilization supports it, so

the overhead associated with the numerous function calls does not interfere with

scalability.

46

 Figure 8. EntityGhost Design.

3. NPSNET-V View

The View object is the same for both the Master and Ghost objects. The graphics

standards that have been used for the different views include Java3D and VRML scenes.

These are registered with the LDAP along with the Ghost object and are downloaded

when the Ghost definition is. Because the entity components are loosely coupled, simply

changing the URL to a new file description changes the view for any entity.

C. CONCLUSION

This chapter successfully demonstrates one correct method for integrating

RELATE’s autonomous behavior into the Model, View, and Controller component-based

design. By using this method, an entity can have coordinated autonomous or user

FishGhost
EntityGhost

Model

FishInterface

Controller View

“has a”

Version
URL

FishView

FishMover
x,y,z…

ThreeDGhost
steer(azth,
 pitch,
 velocity)
setX(newX)
setY(newY)
setZ(newZ)

SteeringCommand
Protocol

FishInterface
Protocol

entityChanged(Entity e)

From EntityMaster

47

control. Additionally, the autonomous control component can be loaded and used by

other entities participating in NPSNET-V.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

 IV. CREATING NEW NPSNET-V APPLICATIONS

NPSNET-V has been constructed to provide network connectivity, dynamic entity

discovery, and dynamic behavior discovery. To implement an application to fully

capitalize all of the capabilities NPSNET-V provides, there are several design

considerations to ponder. This application should be built using proper levels of

abstraction and data encapsulation to ensure a sound design. The design should be highly

cohesive and loosely coupled. Following these steps will make changes in capability

easy to implement. For this reason, the application should be built in layers. Changing a

layer should not affect any others.

The first layer (AppBase in Figure 9 below) is the layer implementing NPSNET-

V. AppBase is a singleton with an entity dispatcher and a container holding all the

entities in the application. The entity dispatcher is responsible for passing network traffic

to and from participating entities.

The next layer, AppJava3DRetained, forms the basis for the creation of a virtual

environment using Java3D. These two layers form the basis for a networked, virtual

environment. The reason for this separation is a change to the network design should not

affect the virtual environment. The reverse is also true. If the use of Java3D is no longer

desired, the network layer should remain unchanged during a redesign—only the

AppJava3DRetained layer would be modified to use the newly selected graphics package.

GhaphicsScene is the application layer, and contains knowledge specific to FishWorld.

50

A networked virtual environment application built using NPSNET-V needs to

only concern itself with details specific to unique requirements. Network connectivity,

dynamic entity discovery, and dynamic behavior discovery are handled automatically.

AppBase notifies the newly created application of the registration and deregistration of

new entities through the implementation of EntityRegistrationListener interface. The

entity is automatically added to the scene graph.

 Figure 9. Virtual World Layers.

A. COLLISION DETECTION

In virtual environment applications, Entities move within the confines of the

situated 3-D space of the environment. Environmental and entity-to-entity collision

detection can be solved in an application-specific manner, but this approach limits the

dynamic extensibility philosophy of this research. Entities would have to be changed to

explore new worlds as these new applications were written for NPSNET-V using

whatever unique approach decided by the creator.

Application-awareness
GraphicsScene

Java3D-awareness
AppJava3DRetained

Entity-awareness
AppBase

Network-awareness

51

1. Entity-to-Environment Collisions

To offer a reusable solution, a simple interface that all NPSNET-V applications

can use, EnvironmentInquiry, provides robust collision detection for all uses. The

“collide” method requires a 3-D world coordinate array and returns true if the passed

coordinate is in collision with the world. An NPSNET-V application should simply

implement the algorithm to return the correct response for the virtual environment.

AppBase is a publicly available singleton; so any entity can easily access the running

application, test to see if it implements EnvironmentInquiry, and perform collision

detection.

2. Entity-to-Entity Collisions

 Figure 10. Entity-To-Entity Collision Detection.

Entity-to-entity collision detection is more difficult than entity-environment

collision. If one hundred entities exist, and every entity asks every other entity about

collision detection, ten thousand questions are asked (Figure 10). This is an order n-

squared problem for n-number of entities. This scalability issue is partially solved by

52

NPSNET-V’s area of interest manager. Areas are continually divided as processors and

network bandwidths reach threshold levels. This reduces the number of entities that are

known by an application. The problem is still n-squared, but n remains a manageable

number.

AppBase, the singleton, can pass the container of all entities in an application to

any requestor. If all entities implement the SituatedEntity interface, collision detection

inquiries can be conducted between entities exactly as it is for EnvironmentInquiry. In

FishWorld, if an entity implements FishInterface, even more ability is provided to assist

with collision detection. FishInterface allows questions to be asked about orientation,

position, and velocity. Entities can conduct collision avoidance more accurately if all of

these questions can be asked. FishInterface tends to be more application specific for

FishWorld, however, where SituatedEntity interface is applicable universally.

The other benefit of implementing FishInterface is during execution of the

FishWorld application, each entity is handed a container of FishInterface objects that are

within that entity’s sight radius. This process occurs at frame update rate, so that an

entity always knows what it can see. This entity only conducts collision avoidance with

other entities in this small container—not the entire population. This creates a small

efficiency gain in the FishWorld application. All these gains can be built into other

NPSNET-V applications by copying from FishWorld. This would additionally make

FishWorld entities compatible with these new worlds.

53

B. PHYSICS

Many applications have forces that affect the entities present in the environment.

These forces may include gravity, buoyancy, air and water currents, inertia, and others.

This problem has the same requirements as collision detection—offer general-purpose

solutions when useful and specific solutions where required. The architect of a new

virtual world application using NPSNET-V simply implements this interface replicating

the physical forces affecting entities. Entities created for one world are guaranteed to be

universal participants for all NPSNET-V worlds that follow this same philosophy.

For FishWorld, this interface is EnvironmentInquiry—the same one used for

environmental collision detection. The method, “applyPhysics()” accepts a 3-D

world coordinate array and component velocities and returns a corrected 3-D world

coordinate array. The predominant forces in FishWorld include the water currents in the

Monterey Bay Aquarium Kelp Forest. By calling the physics application method, entities

ebb and flow with the currents of the aquarium as described in chapter II of this thesis.

C. MODEL, VIEW, CONTROLLER

This chapter describes one correct design of data encapsulation for the creation of

new entity types for NPSNET-V. Understanding this will aid those interested in the

creation of new entities for participation in new NPSNET-V virtual worlds. Masters and

Ghosts should each be constructed from Model, View, and Controller components.

Future work includes the dynamic creation of new entities by combining selected

downloaded components. This process would be the same as that used for dynamic

54

entity discovery. To finish the description initiated in chapter III, this section will

describe the design of the Model, View, and Controller components of both Masters and

Ghosts.

1. Master

 Figure 11. EntityMaster Layers.

In FishWorld, a FishMaster represents a specific fish type, but it is constructed

using many layers. Similar to the layering that was described for constructing new

virtual worlds, individual entities must also be created using robust software engineering

Controller

Application-awareness
FishMaster

View-awareness
Agent3DMaster

Network-awareness
SteeringMaster

Distributed-awareness
EntityMaster

Self-awareness
Entity

Agent3D

Reasoning-awareness
Agent

Thing

3-D Space-awareness

Self-awareness

FishView

SceneGraph-awareness
EVJava3DRetained

EntityView

Application-awareness

Self-awareness
Creation-awareness

View

Controller-awareness

Ghost-awareness
Protocol

55

philosophies. The base class, Entity, in addition to containing many data structures,

stores a name and a unique ID—this Entity must be uniquely identifiable in the entire

world. This ID allows network traffic to be passed to and from Masters and Ghosts.

EntityMaster and EntityGhosts extend Entity. At this level of abstraction, an entity either

controls an unknown number of Ghosts as an EntityMaster, or is an EntityGhost that

follows a single EntityMaster. Figure 11 is the referenced illustration.

At the SteeringMaster level, the entity understands the sending of updates to all

the instances of Ghost representatives. The handfuls of protocols that are used by a

EntityMaster are registered in this class, and the SteeringMaster knows how to convert

changes to the model into a specific instance of a protocol and transmit it over the net.

Agent3Dmaster is the culmination of the Model, View, and Controller for instances of

EntityMaster. This could be broken into two different layers, but this combination

follows a logical approach. The EntityView object is responsible for updating the scene

graph based on positional and orientation data. The Controller manipulates this location

data based on either user or autonomous input. Essentially, positional and orientation

data must be shared between the Controller and the View; therefore this layer provides

the correct data encapsulation. The final layer, FishMaster, is essentially an application

layer object—it represents a specific fish type.

56

2. Ghost

The EntityGhost object has a similar structure to the EntityMaster, but does not

require the same complexity. The View object for a Ghost is the same, but the

Controllers and the construction of the Ghost model object are quite different than those

for the Master. Figure 12 is an illustration of EntityGhost. EntityGhost extends from the

base class, Entity. EntityGhost maintains an awareness of network distribution and self-

creation. The EntityGhost class maintains knowledge that it is serialized, passed over a

network connection, and reconstructed on a remote machine. It maintains state

information about the status of its VRDNS registration on the LDAP server and the status

of its own creation on the remote machine. The registration is required for dynamic

entity discovery to operate. The ThreeDGhost extends from EntityGhost and adds the

awareness of 3-D view objects, controller objects and a physics engine to move the

instance of ThreeDGhost through 3-D situated space. These three objects are combined

at this layer to provide appropriate data encapsulation. The ThreeDGhost is a container

for this object’s View, Controller, and physics subset of the Model—the ThreeDGhost

contains a Vew, Controller and Model object. Changing a ThreeDGhost’s physics engine

or View simply requires that this object be replaced. Crowding all these objects at this

layer tend to make this a busy object, but this relationship is appropriate for the required

interactions.

The appropriate EntityView is drawn based on the states of the model’s many

attributes. These states are continually modified on the Ghost based on the reception of

57

the attached protocols—the Controllers of the Ghosts. The ThreeDGhost provides

interfaces that a controlling protocol can manipulate. The Master is, of course,

responsible for sending out these messages to Ghost -Controllers, so that the states of the

Master and corresponding Ghosts correlate. The FishGhost class extends the

ThreeDGhost and is an application layer object; it is the specific instance of a Ghost fish

in FishWorld.

 Figure 12. EntityGhost Layers.

The protocols are specific to the relationship between a Master-Ghosts set. The

creation of new Master types may require the creation of new protocol types as well.

This is easily handled by NPSNET-V at runtime and is one of its greatest capabilities.

Protocols can include updates to a myriad of data sets including situated (position and

orientation), situational (current active goal), and general (health and energy). These

protocols could trigger specific animations of the view object such as firing weapons,

explosions, or activating defenses. To assist with the creation of new entity types a brief

Controller

Protocol

Model-awareness

3-D Space-awareness

View-awareness

FishGhost

3Dspace-awareness
ThreeDGhost

Distributed-awareness
EntityGhost

Self-awareness
Entity

View-awareness
Controller-awareness

Creation-awareness

Application-awareness

Protocol

Protocol

Situational-awareness
Protocol

58

description of the protocols used in FishWorld is given. These four lightweight protocols

accomplish all the interactions required for Fish Entities.

a. Steering Commands

Schooling Masters will generate several steering commands to maintain

integrity of a school. Experimentation was conducted to determine the best method for

sending these changes to Ghosts. During a turn, the change alone was being sent, but

dropped packets caused the escalation of error accumulation. To rectify this, whenever a

Master turns, the steering command contains the new heading. In the case of dropped

packets, the Ghost can successfully turn to the correct new heading. The Ghost maintains

angular velocity, so that the Ghost turns toward the new heading—it is not achieved

instantaneously. When a steering command is sent, the new velocity and pitch of the

Master is also sent. This ensures that the dead reckoning of the Ghost remains close to

the movement of the Master.

The interactions between the various Fish Entities (schooling, attacking,

fleeing, avoiding collisions, eating, etc.) all require situated knowledge, position and

orientation data, for all participants; and a Master in the world is more likely to be

interacting with a Ghost representation. Steering commands are small enough to support

scalability requirements but robust enough to ensure that Ghosts maintain a close

approximation of the Masters’ position and orientation for accurate interaction. Fish in a

school continuously make small turns to avoid collisions with other fish while

maintaining the cohesion of the school. Because of this, steering commands are

59

generated several times a second for a schooling Entity, and likely be the most frequently

transmitted packet in FishWorld.

b. Full State Protocol

Even if steering command protocols are transmitted at frame rate, error

will accumulate. To rectify this, the correct situated data set must be sent periodically.

Additionally, information about the current state of the Master model object must be

updated in the Ghost. The full state protocol accomplishes these tasks. The Ghost must

avoid snapping instantly to the new correct position and orientation data. The Ghost

should converge to the true position. The sending of this full state protocol, if sent at

frame rate, would provide one hundred percent data correlation between Master and

Ghost (although with an unavoidable time lag). It would greatly limit the number of

entities that could participate in the simulation, however. NetworkTunable is an interface

implemented by the SteeringMaster that varies the rate at which the full state protocol is

sent. If the processor of a participating machine or the bandwidth of a network

connection reaches a threshold, the NPSNET-V area of interest manager can tune the

fidelity of the simulation to provide scalability.

c. Fire Torpedo Command

To demonstrate the potential for use with military applications,

submarines were created for FishWorld. When a Master submarine fires a torpedo, this

state is transmitted to the Ghost using the fire torpedo command. This state contains

information about the origin, velocity, direction, and pitch of the weapon. This allows

60

the Ghost to fully animate the torpedo employment without additional transmissions.

Any collision with other agents or terrain will result in detonation. This detonation can

occur on an EntityMaster or EntitiyGhost. This example requires another problem be

addressed—if two entities on different machines are engaged, how is an attack on one

entity by another resolved.

d. Suffer Attack

There are four possible approaches to solving the injury of one entity by

another that are interacting remotely through Ghosts:

• Referee Server. The first method would be to use a referee system

through a server. This architecture violates the principles of scalability in NPSNET-V.

• AttackMaster-to-PreyMaster. One Master could send a command to the

other Master to suffer an attack. Due to latency and dead reckoning inaccuracy between

attacking Master and attacking Ghost on the attacked Master’s machine, the receiving

Master may choose to ignore the command.

• AttackMaster -to-AttackGhosts-to- PreyMaster. Thirdly, the attacking

Master could notify all of its slave Ghosts to attack the entity prey. The Ghost that is

resident on the prey Master’s machine is the one to actually carryout the attack. The

attacked Master could then suffer an attack at the hand of the attacker. There is a slight

problem, however; because the Ghost may be slightly out of position form the Master

based on latency and dead reckoning inaccuracy.

61

• AttackMaster -to-PreyGhost-to- PreyMaster. Finally, this attacking

Master could attack the local Ghost prey and rely on this Ghost to notify its owning

Master to suffer an attack. The attacked Ghost could decide if the attack was valid

without the penalty of inaccuracy caused by latency or dead reckoning error. The

attack’s validity would be measured based on the Ghost position—the exact same

position that the attacker has pierced. If the attack was valid, the Ghost notifies the

owning Master and the owning Master responds by changing the model. The problem

here is that the prey Master could fight unfairly and ignore the command—of course this

problem exists in all the above options.

In FishWorld, the final method is implemented for the attack interactions.

The reasons for this include accuracy, validity checking, scalability, and ease of

implementation. When the attack is completed, the Master registers the damage and

transmits a full state protocol to notify all the Ghost representatives of the change.

3. View

 Figure 13. EntityView Layers.

FishView

SceneGraph-awareness
EVJava3DRetained

EntityViewRetained

Entity-awareness EntityView
Creation-awareness

Application-awareness

Distributed-awareness

Retained-awareness

62

Figure 13 shows that view objects in NPSNET-V all extend from EntityView

class. EntityView, as a base class, has more awareness than the base class for entities.

The reason for this is straightforward—all view objects are associated with a Master or

representative Ghosts. Because Masters and their Ghosts use the same View, this View

must be fairly robust-- knowledgeable of network registration, creation status, and

awareness of controlling entity’s states. To provide a generic way of updating this view

object whether it be associated with a Master or a Ghost, EntityView implements the

EntityListener interface. If an owning entity registers this view, whenever this entity

changes the view object gets notified and is able to accurately represent the entity (this

implements the observer pattern). This class must always be serializable, because it is

stored on the LDAP server. It is passed as byte code, reassembled, and instantiated on

every interested machine to support dynamic entity creation. The next layer represents a

division into two different graphics modes—immediate or retained mode. Java3D

supports the efficient retained mode, so this is the mode used in FishWorld. Immediate

mode is used for libraries that don’t provide retained mode support. EVJava3DRetained

extends the above base classes and provides the basic structures required for insertion

into a Java3D scene graph. This allows a view to translate and rotate anywhere in the

virtual world to correspond to an entity’s coordinate position and orientation data. At this

level, multiple view types are loadable. A VRML or XML description can be parsed and

loaded as a Java3D BranchGroup at runtime. In this way an entity can change

appearances by simply changing the URL to the file description. The final layer of a

view object is the application layer. FishView is essentially a specific instance of a view

63

object for a fish entity. This view object contains all the animations and visual operations

of the owning Master or Ghosts.

4. Controller

The Controllers used by Agent3Dmaster are also constructed in layers. The

reason for this is due to the complexity of adding autonomous control of an entity.

RELATE was described in detail above, but it was not discussed in terms of proper data

encapsulation. The base class is Thing, which simply possesses self-awareness. The

Agent layer extends Thing, and has knowledge of reasoning tools supplied by RELATE.

Agent3D is the layer that tells the Agent how and when to make a decision. An Agent3D

object also possesses situated-space awareness. This allows the Agent to translate a

decision into a physical move in the 3-D world. Because Agent objects understand user-

control in addition to autonomous control, the Control object is nearly completely

contained in the Agent3D class. The exception to this is the ability of Ghosts to send

protocols to the Master to inform it of an attack or other such event. This packet may

actually lead to a change in the model— in the case of an attack serious damage can be

inflicted. This is why this protocol qualifies as a controller.

D. CONCLUSION

Only by utilizing sound software engineering principles can a participant take full

advantage of the capabilities of NPSNET-V. Use of these principles will additionally

ensure ease of incorporating future capabilities. By looking at the example components

64

constructed for use in FishWorld, new entities can be created that are capable of

autonomous and user control, and new virtual worlds can be constructed to host an

unlimited number of new entity types. These newly created entities can have

dynamically loaded views written in any supported graphics language. Consideration

must be given to entity-environment and entity-entity collisions. With only a handful of

protocol types, a myriad of complex interactions are possible. By avoiding monolithic,

application-specific coupling, these capabilities are extensible to dynamically loaded

entities.

65

 V. PROOF OF CONCEPT: FISHWORLD

This chapter describes the architecture and implementation of the FishWorld

application. FishWorld was designed to demonstrate the utility of NPSNET-V’s rich

feature set. The previous chapters described the design of the Entities, the environment,

and the mechanics for the myriad interactions. This chapter describes the design and

implementation of FishWorld, including fish agent behaviors and personalities.

A. INTENT OF FISHWORLD

The intent of FishWorld is to construct a prototype application that fully tests the

planned capabilities of NPSNET-V. Additionally, it forces the research group to

complete design features and consolidate individual modules. The completed application

must be robust enough to operate in concert with the advanced features of NPSNET-V

while preserving the dynamics of a Multi-Agent Simulation.

1. Features

During the implementation of FishWorld, the features of NPSNET-V were

explored and tested. The members of the NPSNET Research Group constructed these

features with considerable effort. The key features that are truly noteworthy are

described below.

a. Dynamic Heterogeneous Entity Discovery

New Entity, View, and protocol types that have never been seen before can

be introduced to the application. The application must be robust enough to incorporate

66

these dynamically loaded objects. For this reason seven new entity types, seven new

entity views, and four new protocols have been created:

• Shark. Entity (Rogue Predator) and View.

• Tuna. Entity (Schooling Predator) and View.

• BlueFish. Entity (Schooling Carrion Eater) and View.

• SilverFish. Entity (Schooling Carrion Eater) and View.

• Submarine. Entity (Schooling Predator) and View.

• Ship. Entity (Rogue Predator) and View.

• WeekendFishFeeder. Entity (Stationary Food Source) and View.

• SteeringCommand. Protocol.

• FishInterface. Protocol.

• FireTorpedoCommand. Protocol.

• SufferAttackCommand. Protocol.

b. Scalability

Numerous Entities may be added at runtime. NPSNET-V contains an

Area of Interest Manager to allow for many networked participants. The application

must have a method for incorporating a variable number of agents at runtime. The

67

network packets that are transmitted to relay model state information must have tunable

fidelity and transmission rates to support scalability.

c. Application Generic Implementation

The implementation of the application must remain generic in order to

support these myriad Entities. In order to encourage participants to generate new entity

types that can participate in a myriad of NPSNET-V virtual worlds, the application must

use non-monolithic solutions to challenges such as collision detection and application of

physical forces such as gravity.

2. Autonomous Entity Requirements

FishWorld should provide a realistic environment. The behaviors of the

participating agents should appear natural and be adaptable. Fish in the Monterey Bay

Aquarium don’t prescript or contrive their actions. In FishWorld, individual fish should

not use deterministic methods to create flocking behaviors. Leader fish are not required

to assign a place in a school formation to each participating fish agent. Leader fish will

not decide when a school should flee from a predator. The world should not be limited to

a division of only two factions—friend or foe. Even though an agent reports that he is

not a predator, his actions may reveal contradictory intentions. If two predators

encounter each other, one is likely to dominate—but which one? When a fish leaves a

school to look for food, it should know where to start looking to rejoin. When a source of

food is found, this should be a great starting location for a food search the next time

hunger is experienced. Fish generally only school with others of the same species. Fish

68

will not necessarily flee from every other species; instead, they only flee from those that

pose a threat. If these mechanisms fail, the species representing an entity type should be

able to adapt to ensure survival of that species. All of these things must exist in

FishWorld.

The remainder of this chapter describes some of the problems and design

challenges that were faced in order to meet these requirements.

B. INTERACTING WITH A DYNAMIC WORLD

This section answers the question of how to create an agent that is adaptable

enough to interact with new or changing environments and other agents. This set

includes new agent types that may be encountered thanks to dynamic entity discovery.

Agents that desire to interact in FishWord must implement FishInterface (discussed in

Chapter III).

1. Learning

To ensure survival and to give an agent the benefit of its experiences, the agents

are given the ability to learn about predators in FishWorld. No hierarchy for predators

has been pre-scripted—this is decided by who puts teeth on whom first. Not all agents

flee from predators, and those that do flee do not necessarily do so unless a predator

announces himself as one. In nature it is not uncommon for a creature to have an

appearance that masks its true intentions. It would not be completely unexpected for

deceptive agents to be introduced into FishWorld. An agent should only be deceived up

69

until the first attack, but after this occurrence, experience should teach this victim agent a

thing or two. For this reason, each agent created for FishWorld has been given a String

array it can use to store names of agent types that have attacked. This knowledge is not

shared across a species, and it is not currently passed during reproduction. This creates

interesting interactions (emergent behavior) between two different predator types.

Assume agent-1 and agent-3 are predator-types-1, and agent-2 and agent-4 are predator-

types-2. Agent-2 will forever fear predator-types-1 if attacked by agent-1. But, at the

same time, agent 3 will forever fear predator-types-2 if attacked by agent-4. Currently

cannibalism does not exist in FishWorld.

2. Memory

Agents have the ability to store two things—food and school locations. When a

social fish becomes hungry, it will leave the school to search for food. When food is

found, this location is stored in memory. The social fish returns to the school location—a

location stored in memory before the fish departed. This location really is only a starting

point for a search for the school since the school is likely to move. When hunger returns,

the fish starts the search for food by heading for the last location food was found. This is

information that is not shared by a species.

The difference between this description of memory and the above section’s

description of learning is that nothing new is revealed about the environment or other

agents for an addition to memory. The agent is simply recording and updating

70

information it obtains about the world. For learning, a change in the agent’s behavior

occurs. Memory simply helps the agent carry out the same behavior.

3. Genetic Algorithm

The use of a genetic algorithm is the only other source for adaptation in

FishWorld. This process changes agents that fail by replacing this dead agent’s

personality with a combination of the best two surviving agents of the same type. The

control of this combination is accomplished by a technique called crossover (discussed in

chapter II). The introduction of genetic mutations allows the reintroduction of discarded

or unique personalities. This process creates the ability to achieve a theoretical maximum

versus stagnating at a local maximum after numerous generations. The figure below

demonstrates this concept.

 Figure 14. Local Max / Theoretical Max.

Local Maximum

Theoretical Maximum

71

The 3D graph plots a theoretical representation of an agent’s score (health) based

on a combination of personality traits. After several generations of reproduction, a

species may tend to become homogenized toward a personality combination that has

scored well. Mutation ensures the introduction of new combinations that may result in

higher net scores. Only by searching the entire graph of combinations can the theoretical

maximum be found. If the environment is continuously changing, the behaviors that

achieve a maximum will also vary. The use of a genetic algorithm offers a chance that

the species stays competitive.

C. CREATING NEW AGENT BEHAVIORS

To meet requirements for agent interactions, unique Relationships are assigned

for every unique agent type. This Relationship can then issue a Role to each agent.

 Figure 15. FishWorld Decision Tree.

Relationships

Roles Roles

Roles

Goals
Goals

Goals Goals

Goals
Goals

Rules

Rules

Rules

Rules

Rules

Rules

Rules Rules

Actions

Straight
Right
Left

Hover

72

1. Roles

To avoid the designation of leader fish, every agent of the same species

essentially has the same Role. In many MASs, a hierarchical approach like the

illustration in Figure 15 is used to simply assign agent behaviors, but for FishWorld, this

structure should not dictate the behaviors of the individual agents. The Roles in

FishWorld, therefore, simply become containers for an allowable goal set for a particular

agent type. The agents may be predators, prey, schooling travelers, or rogue travelers.

Each of these types has a particular goal set. Prey would not have an attack goal.

Individualistic agents would not have a school goal. Underwater vehicles also participate

in FishWorld. They have a torpedo goal to accomplish an attack.

The RELATE Role implementation for FishWorld provides a tailorable goal set

for new agent types. This increases the extensibility of NPSNET-V. New users could

create new agent types and introduce unique autonomous behaviors by adding or deleting

new goals from their Role. For future work, users could possibly select their own goal

set from a pull-down menu at run time. Being able to create new agent types with new

behaviors without having to program them would extend the popularity of NPSNET-V to

non-programmers.

2. Goals and Rules

Each agent has exactly one current active goal in its Role bag of many goals.

Each goal has a bag of rules. Only one rule can be the current active rule (Figure 15

73

above or see description of RELATE in Chapter II). Active goal determination is

situational. Similar to how the current situation determines the current active goal from

the Role container, the active goal selects the current active rule. Goals are assigned

prioritizes, and are selected based on situational metrics in accordance with their assigned

priority. All agents have the same hierarchical goal set listed in order by decreasing

priority in the following subparagraphs.

a. Dead Goal

This is the highest priority goal—if the conditions for death are present,

this goal becomes active regardless of other factors. If an agent’s health is below the

threshold considered death, the active goal is the dead goal—even though no agent

wishes this goal to be active. There is only one active rule possible for this goal—floater

rule.

Floater rule is the one selected for a dead agent. The execution of this

active rule of the dead goal is to sink to the bottom of the tank. When settled there, the

Genetic Algorithm creates a new personality for the agent. The agent is revived and is

free to swim away and to select another active goal. This is how natural selection takes

place in FishWorld.

b. Avoid Wall Goal

Next in the level of importance is the goal to avoid collisions with the

environment simply because these collisions cause tremendous injury to an agent.

Additionally, the walls are not adaptable, and they do not attempt to interact with the

74

agents. The unmoving walls will not attempt to avoid a collision, and this is the rationale

for the high level of importance for this goal. This goal becomes active if the agent is

within a proximity threshold to a permanent object of the aquarium. Each agent has a

different proximity threshold based on one of the factors of its personality. This can be

an advantage during pursuits with a predator or a disadvantage if it leads to deadly

collisions. There is only one active rule possibility for this goal--avoidance.

In the case of FishWorld, if a school of fish has moved up close to the

edge of the aquarium, the fish closest to the obstacle would possibly be pinned. These

fish would attempt to avoid the wall, putting them closer to the school. The next goal

would be to avoid collision with the others. This would cause them turn back toward the

wall. For these reasons, if an agent has another agent with the active goal of AvoidWall

in its bounding sphere of radius the size of its vision, this agent will also turn away from

the obstacle. This ensures that the agents remain in a cohesive school.

AvoidWall rule guides agents away from wall collisions. All obstacles in

the aquarium are anchored to the bottom of the tank. Due to this, agents can pitch up and

climb over all obstacles in the environment to proceed. The other requirement is to turn

an agent away from the perimeter wall if this is the source of the collision. From the

below figure, the aquarium walls encircle the entire environment. The challenge is to

pick which way the agent should turn. To support the requirements of NPSNET-V, the

solving of the collisions detection must be robust but not monopolize the CPU. The

solution will be described by using the below figure of the aquarium. The aquarium is

75

divided in half from the center of the front cutout to the back wall. During a wall

collision, the agent simply turns toward the center of the half of the aquarium it occupies.

 Figure 16. Aquarium Layout From Ref. [Brutzman, 2001].

c. Keyboard Control Goal

User control of the agent holds the next rung of the goal-hierarchy ladder.

The reason this rule follows the death goal, is the agent should still be susceptible to

injury from attack or collisions. The reason this goal follows the wall-collision-avoid

goal is because the agent should automatically return to the field of play. The lack of

user skill in controlling the agent should not reduce its score for inclusion in

reproduction. This effectively keeps the agent from flying through obstacles and keeps

the agent from getting boxed or cornered in. The reason this goal precedes so many

others including the goal for collision avoidance with other agents is that under user

control, the operator is responsible for the actions of the agent. This is going to force

76

agents that are in close proximity to the user-controlled one to be solely responsible for

collision avoidance. The user clicking on the interested agent activates this goal. There

is only one possible rule—KeyboardRule.

The KeyboardRule guides the fish actions while under user control. This

is accomplished through use of a Keyboard controller class. The arrow keys are used to

pitch up or down and to yaw left or right. The m key is used to accelerate and the n key

is used to decelerate. Pressing the escape key inactivates this goal. Additionally,

pressing the space bar key while an agent is selected will toggle the agent’s selection.

d. Avoid Collision Goal

The next priority is the goal to avoid collisions with other agents.

Collisions with other agents inflict some damage. Many of the other goals actually

attempt to bring agents together in close proximity. Due to these factors, avoiding

collisions with other agents takes the next step. It has a higher priority than all the other

goals that result in crowding. The factor that activates this goal is the agent’s proximity

to the nearest other agent. The proximity threshold for this activation is unique to each

agent and is decided by one of the factors of the agent’s personality. There is only one

active rule for this goal—AvoidFishRule.

AvoidFishRule is a simple rule that ensures collision avoidance between

agents. It uses pitch control to send the affected agent higher if already slightly higher

than or, otherwise, lower than the agent to avoid. It uses acceleration to speed ahead if

77

already slightly ahead or, otherwise, to slow down. It uses directional control to turn

away.

e. Flee Goal

This next goal is required purely for survival. FleeGoal is activated when

the agent simply sees another agent that it considers a threat. This agent could consider

another a threat if it is a predator and our agent flees from predators or if the same type

agent has attacked it before in the past. An attack on an agent causes serious injury.

Only a few attacks will completely kill an agent. This goal overrides all lower priority

goals. Schooling provides protection for agents, but fleeing could cause an agent to leave

the protection of the school. Because of this, a trait in the agent’s personality that gives it

a propensity for fleeing from predators was created. Natural selection can now decide the

best technique for survival. This goal only has one rule—FleeRule.

FleeRule is simply an aggressive form of the rule to avoid collisions with

other agents. It turns the fleeing agent away from the nearest predator.

f. Eat Goal

EatGoal has the next priority, but will not be automatically implemented.

The agent must meet the threshold hunger level in order to consider eating. This hunger

level is unique to each agent and is a factor in the agent’s personality. Due to its priority,

EatGoal could cause an agent to leave the protection of a school which could put the

agent in danger. Eating inactivates this goal by reducing the hunger level. EatGoal has

several rules only one of which will be active at a time:

78

• Circulate. The first rule involved in the pursuit of eating is circulating.

This rule is used if no possible food sources are visible. The agent performs random

pitch, yaw, and velocity changes until food is spotted. The frequency of directional

changes is based on a factor in the agent’s personality.

• Collide. CollideRule is used if the agent is pursuing dinner, but the

pursued agent is in the protection of a school at the time of the planned attack. An

attacker is unable to focus on one member of a complex school. This rule is the same as

the avoid fish rule described above.

• Attack. If no dead agents are in sight and we see prey, the active rule is

attack. This rule either takes the agent to the nearest prospect or to the weakest prey

seen. This propensity is decided by the factors of the agent’s personality. This rule steers

pitch and yaw until the agent closes to within bite range of the target. Acceleration is

used if the bait is in front, and deceleration is used if it is behind the agent. When bite

range is achieved, the agent attacks the prey causing injury until the agent dies.

• Join Food. JoinFood rule guides the agent into very close proximity to a

dead agent—close enough to take a bite. This rule can only be called if the acting agent

sees a dead one. This agent could have been killed by any means—killed by another

attacker, death by injury, killed by an attack.

• Eat. EatRule attempts to obtain a meal for the agent in consideration. The

EatRule can only be called if a dead agent is in bite range. This is the rule that brings

79

satisfaction to the eat goal. Eating satisfies this goal by reducing hunger below a

threshold to allow the next highest priority goal to be selected.

g. School Goal

SchoolGoal is the goal that schooling fish agents use as their modus

operandi. Schooling can only occur with other agents of the same type that are not dead.

The possible rules are these:

• Follow Closest

• Follow Aggregate

• Follow Leader

• Follow Random

• Follow Fleer

• Circulate

• Join

• Collide

• Crowd Control

• Wall Collide.

80

Follow closest, follow aggregate, follow leader, and follow random are

rules that are selected based on the strongest schooling factor of the agent’s personality.

These rules can only become active if the agent is in the presence of the required number

of same-type agents that are schooling, under user control, or avoiding wall collisions.

This number, surprisingly, is unique for each agent type and is a factor in the agent’s

personality. Follow closest, follow random and follow leader are rules that move the

follower agent to exactly mimic the other agent it is following. Follow leader is a

mirroring of the agent that is furthest in front of our follower agent that it can see. If an

agent is in front, it makes random movements. Follow aggregate moves to the location

where the center of the school will be in one step. This is based on the average x, y, z

coordinates, pitch, roll, yaw orientations, and velocity of all the participating agents.

Follow fleer is a rule implemented in an attempt to keep fleeing agents

together in a school. If a schooling agent is not fleeing but sees one that is, the active rule

becomes follow fleer. The follower agent attempts to swim to where the fleeing agent

will be in one step.

Wall collide seems like a strange rule to include in school goal. This is to

avoid having agents becoming pinned between the rest of a school and the boundaries of

the aquarium. If a schooling agent sees another agent that is trying to avoid a collision

with the wall, wall collide becomes his active rule. This is only applicable to agents that

are not close enough to a wall to activate the Avoid Wall goal. In this way, the entire

school moves gracefully away from the collision.

81

Crowd control is a rule used if a fish is in a deeply populated school. The

number of fish required to set this threshold is uniquely determined for each agent and is

a factor in the agent’s personality. Each agent has a random coordinate it heads toward

when the threshold is breached. This protects agents from suffering injury from

collisions with other agents.

Collide rule is used if the agent is schooling, but the schooling agent must

be within close proximity threshold of another. This threshold is uniquely determined for

each agent and is a factor in the agent’s personality. This rule is the same as the avoid

fish rule described above. This rule is used in this way to reduce complexity and

computational expense. Some other algorithms compute up to three vectors— one for

school center, one for collision avoidance, and one to match the heading of the nearest

neighbor. The resultant action of the agent is the average of these three. This method

adds undo complexity (3N2) and would not meet the scalability requirements for

NPSNET-V.

The next rule involved in schooling is join rule. This rule is used if a

possible schoolmate is visible and the deciding agent is not in the presence of the

requisite number of others to constitute a school. The agent follows this rule until enough

are in a clump large enough to constitute a school. Essentially, the agent swims toward

the farthest prospect that it can see. Swimming toward the closest it sees would cause

agents to continually swim around in pairs—never forming schools.

82

The final rule involved in the pursuit of schooling is circulating. This rule

is used if no possible schoolmates are visible. The agent performs random pitch, yaw,

and velocity changes until an agent to join is spotted. The frequency of directional

changes is based on a factor in the agent’s personality.

h. Cruise Goal

Cruise goal is the goal used by agents that do not school. They simply

follow one rule—cruise rule. The agent performs random pitch, yaw, and velocity

changes until the current active goal is changed. The frequency of directional changes is

based on a factor in the agent’s personality. This frequency was tuned for each agent

type to create a realistic visual representation.

3. Actions

For the implementation of RELATE, iterating through the decision tree described

above results in the creation of an object called an action. There are only a handful of

actions required to create all the complex behaviors of FishWorld: turn left, turn right,

slip left (half-left turn), slip right (half-right turn), straight, and hover. Within each

action, an agent may accelerate or decelerate, and climb or descend. The agent must

maintain spatial knowledge of the environment, other agents, and self. This knowledge

must include the world 3-D coordinate system and its own local coordinate system, so

that the agent knows its proximity to collisions, other objects, and other agents. The

result of an action occurs at frame rate and results in the actual manipulation of the

agents’ position and orientation within the world coordinate system.

83

D. CREATING DISTINCT PERSONALITIES

The agents in FishWorld have unique personalities that create specific

propensities for certain actions. For every personality trait, there are advantages and

disadvantages. Instead of hand-tuning the agents to achieve specific, desirable

interactions, the personalities are assigned random floating-point precision values from

zero to one during agent creation. The entire set of propensities comprises an agent’s

behavior. The agents eventually achieve tuned behavior after many generations.

Currently this information is not saved; so this process starts from scratch every time the

application is run. This tuning is accomplished by natural selection.

1. Aggressive

With this trait, an agent won't be as likely to flee a predator, or follow a fleeing

agent in the same school. An advantage to this trait is that an agent with a high

aggressiveness may actually attack a pursuer and establish dominance. The disadvantage

to this trait is that the owning agent is more likely to get eaten.

2. Collision Wall

The personality establishes how large a buffer this agent wants between self and

the aquarium. The advantage to having a high value is that the owning agent won't be as

likely to collide which causes damage. The disadvantage to this personality is that the

agent won't be able to find protection against the edge of rocks or aquarium walls where

larger predators could never pursue.

84

3. Collision Fish

This personality establishes the size of the buffer this agent wants between self

and other agents. The advantage to this trait is that the agent won't be as likely to collide

which causes damage. The disadvantage mostly affects social agents desiring to flock.

Because the agent won't tolerate densely populated schools, it will scramble toward the

outskirts of a school making it a possible victim of a predator.

4. Schooling Preferences

Several schooling schemes are used in FishWorld. No one technique is better

than another, but agents in one type school will display different traveling characteristics

than another. FollowTheLeader schooling creates a progressive traveling technique that

quickly covers ground. This seems to be because agents are focused on following the

agent that is out front. An agent out front in the lead simply avoids collisions with

terrain. FollowClosest schooling moves nearly as quickly and progressively as

FollowTheLeader. Agents concentrate on mirroring the pitch, azthmith, and velocity of

the closest other agent it sees. FollowAverage schooling tends to mimic fish in small

home aquariums. The agents constantly swim towards the center of the school of agents

that are within sight. This school is chaotic and tends to stay in one general area. Each

agent has a value for each of these traits—leadership, followClosest, and followAverage.

The highest value decides which schooling technique is used.

85

5. Twistedness

This value is used when an agent is searching or cruising to decide how often the

owning agent will turn either left or right versus heading straight. High twistedness

causes the agent to conduct more thorough searches while lower values causes the agent

to search over larger areas in the same amount of time.

6. Hungriness

This value determines how often the owning agent will feed. This could cause an

agent to leave the protection of a school more often in order to feed. The advantage for

this behavior is that the agent has more energy and is able to swim faster. This value is

separate from the actual hunger value that contributes to active goal selection.

7. Blindness

Blindness determines how far an agent can see. An agent that has a larger sight

radius is more skittish to the point of appearing neurotic. It sees predators farther away.

It schools based on a larger number of agents. It can see food sources at greater

distances. Blind agents tend to be oblivious to numerous changes that occur around

them. This gives apparent purpose and stability to their actions.

E. CONCLUSION

The design used to create FishWorld ensures that the environment contains

continuously adapting agents. By creating autonomous agents that can learn, have

86

memory, have distinct personalities, and can reproduce using a genetic algorithm, an

unlimited number of entity variations are possible. These variations between entities

change the interactions that occur in the VE, and these myriad interactions develop into

emergent behaviors that demonstrate a complexity far more advanced than any of the

algorithms used to produce the individual behaviors. Avoiding application-specific

programming techniques, newly created entities can participate in emerging NPSNET-V

virtual worlds and maintain the myriad interactions.

87

 VI. CONCLUSION

This chapter reviews the accomplishments of this research and highlights areas

that require more study. Additionally, this chapter reports the status of the thesis

statement as the culmination of this effort.

A. RESULTS

The result of this thesis is FishWorld—the proof of concept application. The

application includes realistic fish agents with realistic schooling, attacking, fleeing, and

searching behaviors. Entities successfully respond to both user and autonomous control,

and autonomous agent controllers correctly interact with agents that are under user-

control. Agents correctly retain memory and learning events. The Ghost representations

on remote machines closely mimic the actions of the Master. When Masters operating

on separate machines engage in battle across the network, the resulting damage is

coordinated accurately from Ghost attacked on the remote machine to the owning Master.

The representation of underwater vehicles launching torpedoes is accurate on remote

machines. Masters interact with Ghosts to form schools or engage in attacks.

In the area of component loading, dynamic entity and protocol discovery works

correctly. Heterogeneous entities enter FishWorld without complaint. Entity registration

and deregistration with the entity dispatcher operates as entities arrive and depart an

application’s area of interest. View objects remove themselves from the scene graph as

88

entities are deregistered from the application. VRML objects are correctly rendered in

the scene graph.

In the area of network performance, Area of Interest Management correctly

divides the world, and this distribution works correctly across the participating networked

computers. Variable packet fidelity tuning operates correctly to reduce network

bandwidth requirements. Variable packet frequency tuning successfully responds to

network status commands to further reduce network throughput requirements. Scalability

performance still needs to be tested, but by running several Masters on each of three

participating machines on the same LAN, CPU performance faltered before network

performance. This tends to indicate that NPSNET-V can achieve the goal of scalability

levels that are unprecedented (Wathen, 2001).

B. CONCLUSION

All of the capabilities of NPSNET-V and the RELATE MAS were successfully

incorporated together into FishWorld. There is not one capability that failed, though

there are many that have not been fully tested. The areas that require further study,

experimentation, or development are listed below in the “Future Work” section. The

conclusion of this thesis, therefore, is that by combining a fully dynamic, scalable

networked virtual environment (VE) with an interactive multi-agent simulation

architecture, it is possible to develop virtual environments supporting a large number of

dynamic, heterogeneous entities with complex, adaptable, and interactive behaviors.

89

C. FUTURE WORK

There are several areas requiring more work that could greatly enhance or

empirically measure the capabilities of NPSNET-V. Several experiments could be

conducted to determine exactly what the scalability limits of NPSNET-V are.

1. Agent Ghost Controller

Integrating agent code into the Ghost controller component would reduce the

requirement for packet transmission and packet latency. The Ghost currently only has

basic dead reckoning behaviors. If the CPU running these Ghosts can support this

additional code for each one, running the same agent code for the Master and Ghost

might reduce the need for network packet transmission while providing accurate, or at

least plausible, representation on the participating machines. This might also effectively

reduce latency issues between a Master and Ghosts. Unfortunately an agent’s behavior in

FishWorld is not deterministic—it is situational and probabilistic. Lag causes a Ghost

and Master’s perceived environments to be slightly different resulting in their actions

diverging. For this reason, there remains a requirement for some network traffic.

Different levels of fidelity of agent code could be assimilated into the Ghost. The

network status thread could then adjust each EntityGhost’s agent behavior up or down to

tune the network throughput to balance sufficient fidelity requirements against scalability

requirements for the number of participants.

90

2. Dead Reckoning

An experiment with and an analysis of various Ghost dead-reckoning algorithms

would determine their accuracy. The current algorithm implemented for Ghost agents in

FishWorld simply receives a SteeringCommand from the Master. The Ghost steers to

match the passed heading, accelerates to the passed velocity, and noses over to match the

passed pitch. The Ghost continues along this vector until the next steering command is

sent. A position update is sent at a frequency controlled by the network status thread.

When the Ghost receives this update, it converges to the passed correct location. This

method creates smooth movements for the Ghost that appears very accurate when

compared to the Master on side-by-side monitors, but formal testing is required to

determine the accuracy. New techniques should be introduced and compared for

accuracy and network bandwidth requirements. CPU usage should also be evaluated.

3. Agent Network Tuning

Generating an agent to control network tuning could provide an optimal

speed/quality balance. Currently there are three variables that can be changed to reduce

network throughput requirements: packet fidelity, packet frequency, and Area of Interest

zone management. Changes in one area affect the others and affect simulation fidelity.

Thresholds must be determined to complete effective tuning with the smallest changes

that maximize simulation accuracy. When network throughput reaches some threshold,

expanding the zones in an area of interest management scheme will essentially divide the

traffic that was present on one channel by eight. This is the single most dramatic change

91

that can be accomplished, but this reduces the number of agents that can be seen to the

number present in the same geometric region. It is likely that this change will provide

enough bandwidth to allow throttling up of fidelity and packet frequency. The results of

varying packet fidelity and packet frequency depend on the sizes of the specific packets

being sent, but for large packet sizes, the savings available is substantial. The job of the

network-control agent would be to optimize the tuning of the various techniques to

provide the most realism while being the least intrusive.

4. Scalability Study

Scalability comparisons between NPSNET-IV and NPSNET-V for similar

applications should be conducted to compare the network loads on each. These

comparisons may be the most accurate way to estimate NPSNET-V’s scalability limits.

5. Code-less Agent Creation

Creating an agent factory for autonomous agent behavior would result in code-

less agent creation. Currently, the main differences between sharks, tuna, blue, and silver

fish are variations in RELATE Roles, Goals, and Rules. Sharks are rogue predators, so

they do not have SchoolGoals available as part of their Role. Blue and silver fish are

schooling carrion eaters. They do not have AttackGoals available as part of their Role.

Tuna are schooling predators, so they have all of these goals available. The creation of

an agent factory could allow users to tailor behaviors for their entity. To control active

goal selection, Goals could be assigned a simple priority rating like an Interrupt Request

92

process for an operating system. Behaviors could be continually added to a repository to

allow for the creation of highly complex behaviors and interactions. This agent factory

could also allow for the tailoring of personality traits during agent creation. Tailoring a

personality can create quite divergent behavior even among same-type agents.

6. Component Loading

Designing and implementing a component loading technique would ease the

process for entity-creation and world-discovery. If every entity were created using the

same Model, View, Controller component design pattern, then new entity types could be

constructed by combining components from the repository that already exists on the

LDAP server. Work in this area could allow non-programmers to create networked

agents with tailored behaviors and view objects.

7. Security

A distributed security system should be designed and implemented to protect

against malicious agents in NPSNET-V. Because agent code is serialized into bytes,

distributed over a network connection, reconstructed, and instantiated on the other side, it

is clearly possible for malicious code to be run on participating machines. JavaTM

provides some basic security against many types of attacks through the Java Virtual

Machine (JVM), but this security falls short of absolute protection. A robust protection

capability would ensure that users operate NPSNET-V securely and sefely. The current

system trusts all loaded code.

93

8. New Virtual Worlds

NPSNET-V can host new virtual environment applications. NPSNET-V provides

the capability to host several virtual worlds simultaneously to include the capability to

move between worlds. NPSNET-V is essentially a laboratory for research in modeling

and simulation. Some examples of its usefulness include these:

a. Warfighting Experiment (WE)

Current WE systems are quite monolithic and require extensive

modification to host new weapon systems and their myriad interactions. These

modifications require exhaustive testing and evaluation, and present the possibility of

introducing or uncovering bugs. The iteration through the battery of test required for a

WE requires human cognition and interaction. NPSNET-V is not crippled by these

limitations. The new weapon system being tested could be given selectable autonomous

or user-control. The battlefield could be evaluated to determine the impact of the new

system, and to measure how opposing systems adapt to this newly introduced capability.

The use of genetic algorithms, learning, and memory could provide the adaptability to

guide the course of the tests without requiring or limiting the conduct of the experiment

to human input. The result of this type experiment would provide baseline values for

weapon effectiveness, standoff ranges, system’s range and required fuel capacity, armor

protection, radar and IR stealth, speed, maneuverability, size, etc. These values could

correspond to an agent’s personality traits. The conduct of the experiment would

essentially be tests of various personality sets. Because of dynamic entity discovery, the

94

conduct of the experiment could use heterogeneous entities distributed across the network

from laboratories in various locations.

b. Experiment with Tactics

All U.S. military services conduct experiments with tactics for situations

over the entire spectrum of combat operations. This includes the current trend toward

peacekeeping operations. Similar to the conduct of Warfighting Experiments, the

adaptability of agents could guide the course of tactics experiments. The difference in

the conduct of these experiments is not with varying the personality traits of the agents,

but with varying the Role, Goals, Rules, and therefore, the resultant action-selection of

the agent. The best behavior set and the conditions used for this action determination will

result in the highest score and provide a baseline set of tactics.

The trick is to provide a decoupled behavior set and action-determination

system. The behavior set could be compiled from a repository of Roles, Goals, Rules,

and Actions. The determination system could be compiled from a set of trigger events

and metrics. Extensible Markup Language (XML) could provide the solution for

implementation of such a determination system, and could therefore be loaded and

modified at runtime. This would accurately correlate to the use of Rules of Engagement

(ROE) in current NATO military operations. The union of these triggers to the

appropriate behaviors could be initially constructed by human intervention, but through

the adaptability of agents, could evolve over several iterations to reveal innovative

95

solutions. As hostilities escalade, agents could trade-up to new behavior sets to create

realistic complexity.

c. Experiment with Systems

Logistic, command and control, and communication systems share certain

characteristics that make them similar. Each has flow from one location to another using

a distribution system involving several nodes that initiate, control, and monitor this flow.

The architecture of the system of nodes may be hierarchical or randomly constructed.

Objects that are passed along paths between nodes would have differing priorities, and

therefore, be handled differently. The reason NPSNET-V is the best choice to conduct

these type experiments is it can allow a process to be visualized, and with dynamic entity

discovery, new nodes and new node types can be dynamically loaded at runtime.

Autonomous control can be used to simulate the operation of nodes, and the use of

adaptation could introduce efficiency gains into the process. Simulation of damaged or

destroyed nodes or pathways could be conducted to discover new or test current

contingencies. The results of these experiments could produce benefits on par with those

from the war-fighting or tactics experiments.

96

97

GLOSSARY

• Agent - A software object that perceives its environment through sensors and acts
upon that environment through effectors to achieve one or more goals.

• Model – A description or analogy used to help visualize something that cannot be
directly observed.

• Coordination – The act of managing interdependencies between activities performed
to achieve a goal.

• Simulation – A method for implementing a model to play out the represented
behavior over time.

• Adaptation – The process of modifying ones behavior over time to advantageously
form a better fit to the environment.

• Complex adaptive system (CAS) – A self-organizing system that maintains coherence
in a changing environment through interactions and adaptation.

• Learning - The acquisition of knowledge, formation of associations, and modification
of behavior to improve performance based on exposure to and exploration of the
environment.

• Evolution – A process of continuous change from a lower, simpler, or worse state to a
higher, more complex, or better state.

• Multi-agent system (MAS) – A system in which several interacting, intelligent agents
pursue some set of goals or perform some set of tasks.

• MAS simulation – A rich, bottom-up modeling technique that uses diverse, multiple
agents to imitate selected aspects of the real world system’s active components.

• Relationship – The assembly of relations, i.e. understandings and/or commitments,
between mutually interested parties that link certain individuals to others.

98

99

LIST OF REFERENCES

Brutzman, D. (2000). The Virtual Reality Modeling Language and Java.
http://www.web3D.org/WorkingGroups/vrtp/docs/vrmljava.pdf (23 July 2001).

Brutzman, D. (2001). Kelp Forest Exhibit Modeling Project.
http://web.nps.navy.mil/~brutzman/kelp/ (20 July 2001).

Brutzman, D. and McGregor, D. (2000). Distributed Interactive Simulation DIS-Java-
VRML Working Group. http://www.web3d.org/WorkingGroups/vrtp/dis-java-
vrml/ (23 July 2001).

Buschman, Frank et al (1996). Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns, New York, NY: John Wiley & Son Ltd.

Capps, M., et al. (2000). NPSNET-V: A New Beginning for Dynamically Extensible
Virtual Environments. IEEE Computer Graphics and Applications, Volume: 20
Issue: 5, Sept.- Oct. 2000.

Day, B. (1999). 3D Graphics Programming in Java: Part 2, Advanced Java 3D.
http://www.javaworld.com/javaworld/jw-01-1999/jw-01-media_p.html (23 July
2001).

Edmonds, B. (2001). Gossip, Sexual Recombination and the El Farol Bar: Modeling the
Emergence of Heterogeneity.
http://www.cpm.mmu.ac.uk/~bruce/emhet/emhet_1.html (19 Jul 2001).

Ferber, J. (1999). Multi-Agent System: An Introduction to Distributed Artificial
Intelligence, (English edition) Harlow, England: Addison-Wesley.

Fisher, R. (1958). The Genetical Theory of Natural Selection. New York, NY: Dover
Publications.

Gosling, J., and McGilton, H. (1996). The Java Language Environment.
http://java.sun.com/docs/white/langenv/index.html (23 July 2001).

Hiles, J. (2000). Course Notes for MV-4015 Agent-Based Autonomous Behavior for
Simulations. Winter, 2000, Naval Postgraduate School.

100

Hodges, J. (1997). Introduction to Directories and the Lightweight Directory Access
Protocol. http://www.stanford.edu/~hodges/talks/mactivity.ldap.97/index2.html
(23 July 2001).

Macedonia, M. et al. (1995). NPSNET: A Network Software Architecture for Large-Scale
Virtual Environments. Presence, Vol. 3.

McGregor, D. (2001). NPSNET-V. http://www.npsnet.org/~npsnet/v/index.html (23
July 2001).

Reynolds, C. (1987). Flocks, Herds, and Schools: A Distributed Behavioral Model.
http://www.red3d.com/cwr/papers/1987/SIGGRAPH87.pdf (23 July 01).

Reynolds, C. (1999). Boids: Background and Update.
http://www.red3d.com/cwr/boids/ (30 Jul 00).

Roddy, K. and Dickson, M. (2000) Modeling Human And Organizational Behavior
Using a Relation-Centric Multi-Agent System Design Paradigm. Masters Thesis,
Naval Post Graduate School, CA.

Singhal, S. and Zyda, M. (1999). Networked Virtual Environments, Siggraph Series.
ACM Press Books.

Stapleton, Lisa (1997). If a Tree Falls in the New JavaTM Media API.
http://developer.java.sun.com/developer/technicalArticles/Media/3DGraphicsAPI/
(23 July 2001).

Von Neumann, J. (1966). Theory of Self-Reproducing Automata. Edited and completed
by Arthur Burks. Urbana, IL: University of Illinois Press.

Wathen, M. (2001) Dynamic Scalable Network Area Of Interest Manager for Virtual
Worlds. Masters Thesis, Naval Postgraduate School, CA.

Yeong, W., et al. (1995). Lightweight Directory Access Protocol. ISODE Consortium,
March 1995.

101

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Michael Zyda
Modeling, Virtual Environments & Simulation (MOVES) Academic Group
Naval Postgraduate School
Monterey, California
zyda@nps.navy.mil

4. Michael Capps
Computer Science
Naval Postgraduate School
Monterey, California
mcapps@nps.navy.mil

5. Don McGregor
Modeling, Virtual Environments & Simulation (MOVES) Academic Group
Naval Postgraduate School
Monterey, California
mcgredo@nps.navy.mil

6. Don Brutzman
Undersea Science and Technology Academic Group
Naval Postgraduate School
Monterey, California
brutzman@nps.navy.mil

7. Mr. John Hiles
MOVES Academic Group
Naval Postgraduate School
Monterey, California
jhiles@nps.navy.mil

8. MAJ David B. Washington
Naval Postgraduate School
Monterey, California
davekariwash@msn.com

