NAVAL POSTGRADUATE SCHOOL
Monterey California

THESIS

RENDERING LARGE-SCALE TERRAIN MODELS
IN 3D AND POSITIONING OBJECTSIN RELATION
TO 3D TERRAIN

by
Brian Edward Hittner
December 2003

Thesis Advisor: Don Brutzman
Second Reader: Curt Blais

Thisthesis donein cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2003 Master's Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS
Rendering Large-Scale Terrain Models and Positioning Objects in Relation to 3D
Terrain
6. AUTHOR
Brian E. Hittner
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER
9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A
13. ABSTRACT

Computer generated 3D graphics have been commonplace in computing since the early 1990's. However, most 3D
scenes have focused on relatively small areas such as rooms or buildings. Rendering large scale landscapes based on D
geometry generally did not occur because the scenes generated tended to use up too much system memory and overburden 3D
graphics cards with too many polygons. However, there are applications where the terrain is critical and needs to be rendered
properly such as cartography and military simulation. This thesis is focused on methods of rendering terrain for such
applications.

The data used to build terrain geometry typically comes from elevation postings taken from surveys of the terrain.
This thesis does not focus on collecting this data nor does it compare various sources of terrain data. Instead, this thesis is
about taking elevation data, producing a rendered 3D scene, and placing objects within the scene relative to the terrain. Having
these capahilities makes many military and cartographic applications possible. Some military applications include displaying
the results of computer simulations in 3D, planning operations using a 3D landscape, and rehearsing operations in 3D. The
military does have some tools that can be used today for these actions, but the tools are typically proprietary and expensive.
This thesis is focused on using and extending open source tools for 3D terrain rendering. The result is tools that can be freely
used, studied, and expanded by anyone without licensing costs.

14. SUBJECT TERMS 15. NUMBER OF
Terrain, X3D, Virtual Reality Modeling Language, Digital Terrain Elevation Data PAGES
133
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Thisthesis donein cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited

RENDERING LARGE-SCALE TERRAIN MODELS
AND POSITIONING OBJECTSIN RELATION
TO 3D TERRAIN

Brian E. Hittner

Captain, United State Army
B.S., United States Military Academy, 1994

Submitted in partia fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS
AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL

December 2003
Author: Brian Edward Hittner
Approved by: Don Brutzman

Thesis Advisor

CurtisBlais
Thesis Co-Advisor

Rudolph P. Darken
Chair, MOVES Curriculum Committee

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Computer-generated 3D graphics have been commonplace in computing since the
early 1990's. However, most 3D scenes have focused on relatively small areas such as
rooms or buildings. Rendering large scale landscapes based on 3D geometry generally
did not occur because the scenes generated tended to use up too much system memory
and overburden 3D graphics cards with too many polygons. However, there are
applications where the terrain is critical and needs to be rendered properly such as
cartography and military ssmulation. Thisthesisisfocused on methods of rendering
terrain for such applications.

The data used to build terrain geometry typically comes from elevation postings
taken from surveys of the terrain. Thisthesis does not focus on collecting this data nor
does it compare various sources of terrain data. Instead, thisthesisis about taking
elevation data, producing arendered 3D scene, and placing objects within the scene
relative to the terrain. Having these capabilities makes many military and cartographic
applications possible. Some military applications include displaying the results of
computer ssmulations in 3D, planning operations using a 3D landscape, and rehearsing
coordinated operationsin 3D. The military does have some tools that can be used today
for these actions, but such tools are typically proprietary, not interoperable and
expensive. Thisthesisisfocused on using and extending open source tools for 3D terrain
rendering. Theresult istoolsthat can be freely used, studied, and expanded by anyone
without licensing costs.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUGCTION.ottt ettt st e et e b i e 1
A. PROBLEM STATEMENT ..ottt 1
B. OVERVIEW ..ottt b 1
C. 1Y@ YN I ST 3
D. THESIS ORGANIZATION ..ot 4
BACKGROUND AND RELATED WORKocotiieieeese e 7
A. INTRODUCTION.....coiiiiiiie ettt s snenne s 7
B. GEOGRAPHIC COORDINATE SYSTEMS.....cco oot 7
1. Latitudeand LoNGIitUde........ccceeveeieeiereee e 7
2. Universal Transverse Mercator (UTM) ..ooeveeeniecnnenneeeeeee, 12
3. GeoCentric Coordinate System (GCC)....ccovevevvverierieeveereeee e 13
C. DIGITAL TERRAIN ELEVATION DATA (DTED) ..cccveovevieriereneiesienne 14
D. EXTENSIBLE MARKUP LANGUAGE (XML) oot 15
E. X3D AND THE VIRTUAL REALITY MODELING LANGUAGE
(VRIMIL) ottt bbbttt nae s 17
1 VRML GraphiCSBaSsICS.......cccceieriiiiiiniieiie et 17
2. GEOVRML EXIENSIONS......oiiiiiiieieieiesesie e 24
3. X 3D SPECIHTICALION.....coieieiieieeieerie et 30
F. SUMMARY ettt bbb bbb nre s 31
TERRAIN RENDERING ALGORITHM IMPLEMENTATION......cccccvvvvirnene 33
A. INTRODUCTION.....coiiiiiiste sttt s 33
B. GEOMANAGER........c ettt sttt e sne e ens 33
C. GEOTERRAINGRID NODE ..ot 34
1 Building an Indexed Face Set from a Height Arrayccccceeueeee. 37
2. Calculating Elevation at an Arbitrary Pointcccccceveeveeceeseenee. 43
3. Calculating Orientation at an Arbitrary Pointcccccovveeienenen. 45
D. GEOLOCATIONS NODEooiiiiiieiirieriiree et 47
E. SUMMARY ettt sttt aenaesaessesnenreans 49
EXPLORING FUTURE POSSIBILITIES......ccoiiiiereseresesesee et 51
A. INTRODUCTION.....coiiiiiise sttt sttt sre s 51
B. REDUCING THE NUMBER OF POLYGONSDISPLAYED.................. 51
C. LINE OF SIGHT (LOS) ALGORITHMS ..ot 56
1. Terrain Based LOS Calculations.........ccccovevininenininienesesie e 56
2. Horizon Based Line of Sight Calculations..........cccccvvivenieneenennne. 58
D. MISCELLANEOUSTERRAIN FUNCTIONS........ccciirireienene e 59
E. TERRAIN SERVERS........oo ottt e 63
F. DEFORMABLE TERRAINcoiiiiie e 65
G. GEOGRAPHIC FEATURES SUCH AS BODIES OF WATER,
ROADS, VEGETATION, AND BUILDINGS.......cccooriririeienene e 67
H. SUMMARY ettt st sttt eentesaesnesnesreanis 69

APPENDIX B. CODE EXAMPLES........co 73

A. GEOMANAGER.ot 73
B. GEOTERRAINGRID NODE ..ot 76
C. GEOLOCATIONS NODE ...ttt 98
D. EXAMPLE OF GEOTERRAINGRIDccococoiiiiii, 106
E. MULTIPLE GEOTERRAINGRIDS AND A GEOLOCATION3
EXAMPLE ... 110
LIST OF REFERENCES.........oo i 117

INITIAL DISTRIBUTION LIST

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure5.
Figure 6.

Figure7.

Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.

Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

LIST OF FIGURES

Terrain visualization concepts [Army FM 3-34-230].ccccoeevvreereeinneesieenens 4
Depiction of earth with CarteSian aXiS.........ccoeereeirreerienieenee e 8
Earth with latitude and longitude SyStemM..........cccecvecereeneeceseere e 10
Earth as described by the UTM System.cccooeeiiriiiieneneseeeeee e 13
Right-handed coordinate axes showing VRML/X3D coordinate space.......... 18
AV-8B Harrier by Miguel Ayala at

[http://web.nps.navy.mil/~brutzman/Savage/AircraftFixedWing/AV 8B-
Harrier-UnitedStates/ pages/page0L.html]cccoveeeereeneniineeseeee e 19

us Bradley fighting vehicle by Renee Burgess

[http://web.nps.navy.mil/~brutzman/Savage/GroundV ehiclessM2A 3/_page
S/PAGEOANIMI] .. s 20
Soviet built T-72M tank by Joseph Chacon

[http://web.nps.navy.mil/~brutzman/Savage/ GroundV ehicles/T72M/chapt

L= 10110 0] S 21
Squaw Valley by Martin Reddy

[http://www.ai.sri.com/~reddy/geovrml/exampl es/squaw/squaw.wrl] 25
X3D-Edit main screen [http://www.web3d.org/x3d.html] . .cceevevveeeeeee, 31
Depiction of how GeoManager IS aCCESSEU.........coverirreerierienee e 34
GeoTerrainGrid example with shaded terrain............ccceceeeeveeceveeresceseene, 36
GeoTerrainGrid shownin wire-frame mode............ccovvvvvieeneninneeseseneee, 37
How aheight array isturned into an indexed face Setccevvevveceveeieennnne 38
Building agrid square as two triangles..........ccoeeererieneenenie e 39
Depiction of building coordinate indeX list.........ccccoveeevierieeienieese e 41
Explicitly defining terrain rendering.........cooeeeeeenenieneenescesee e 42
EXplicitly rendering terrain..........cccoveeeeeeieee e ee e 43
Determining which polygon apoint lieswithin..........ccoccooriiniiniiiinene 45
A Geol ocation3 node orienting an object to terrain............ccvceeveeceneeeieeeeene 48
A GeoL ocation3 node spanning multiple GeoTerrainGrids..........cccceveeenenne 49
Indexed face set drawn at 3 RESOIULIONS........ccoviiinineneriee e 53
Wire-frame terrain showing how distant terrain polygons do not require

polygons aslarge as Near tETaIN.........cccvcceveereeie e see e 54
Graphical depiction of determining terrain based line of sight........................ 57
Determining the number of line of sight calculations...........cccccevveeevieereennne 58
Calculating distance to the NOMZON..........ccooeeirieniee e 59
Calculating PErcent SIOPE.......veiieieeece et 60
UTM system showing converging grid squares [FM 3-25-26 Figure 4-11]....61
Determining the path Over terrain..........ccocvecesece e 63

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

This thesis would not have been possible without the work of the SAVAGE group
at the Naval Postgraduate School. The SAVAGE group has been aggressively pursuing
graphics technologies using X3D and VRML. The work of this group provided the
foundation for thisthesis. In particular, CPT James Neushul’s DTED server software
that provided the terrain files that were the basis for the GeoTerrainGrid node, which is
where the mgjority of the work was done for thisthesis. Likewise, the SAVAGE group
provided the library of military vehicles that the tanks used in the example files came

from.

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

INTRODUCTION

A. PROBLEM STATEMENT

There are many military applications that depend upon having an accurate
representation of terrain including simulating battles, planning operations, and rehearsing
technical maneuvers. Simulating battles requires determining if opposing forces can see
each other and engage each other. Thisrequires line of sight calculations based on the
positions of the opposing forces and the terrain separating them. Planning operations
requires knowing the steepness of terrain to determine where units can move and line of
sight calculations (again) to determine engagement areas. Rehearsing military operations
requires as detailed avisual representation of the terrain as possible so that the
participants in the rehearsal can recognize the significant terrain features later when
executing the operations. All of these applications depend upon accurate renderings of
terrain or accurate analysis of the terrain. The underlying source of datafor theterrainis
typically atwo dimensional (2D) array of height values called a height field. The
problems with using computers as analysis tools for terrain begin with these height fields.
Thisthesislooks at six specific problems with using terrain based on height fields:
convert the height field into a renderabl e object, calculating the elevation of an arbitrary
position, calculating the orientation that an object will have if resting on the terrain at an
arbitrary point, calculating line of sight (LOS) based on height fields, calculating LOS
based on curvature of the earth, and reducing the polygon count of rendered height-field
terrain to improve the run-time performance of the rendering engine.
B. OVERVIEW

Thisthesis starts with the Virtual Reality Modeling Language (VRML) asa
rendering engine. VRML alone does not support geographic coordinates, though, so the
GeoVRML extension to VRML isused. GeoVRML allows a standard web browser such
as Internet Explorer to render graphics that are specified in GeoDetic Coordinates (GDC),
Universal Transverse Mercator coordinates (UTM), or GeoCentric Coordinates (GCC).
Geodetic Coordinates are more commonly known as latitude and longitude values.

Universal Transverse Mercator coordinates allow specifying locations as a northing value

1

(meters north-south) and an easting value (meters east-west) referenced within one of
sixty world zones. Both of these coordinate systems are basically 2D systems that are

mapped to the varying surface of the earth.

GeoCentric Coordinates are part of atrue three-dimensional (3D) coordinate
system. A coordinate specified in GCC isatriplet containing an X, Y, and Z value.
Converting between GDC and UTM isfairly straightforward since latitude and northing
values are basically just a measurement of distance from a boundary, i.e. either the
equator or a zone boundary. Converting between longitude and easting valuesis alittle
more complicated because the distance between successive lines of longitude changes
with latitude. Lastly, the height values do not change when going from GDC to UTM as
both are meters above sealevel. Converting to and from GCC is more complicated,
though. A changein latitude does not map to a change in one variable of a GCC triplet.
Instead, a change in latitude can cause al three values in the GCC triplet to change.
Changing longitude or elevation has similar complex effects. Fortunately, most users do
not need to work frequently with GCC coordinates as they are primarily needed by the

computer for rendering.

Thisthesis deals with all three of the above-mentioned coordinate systems: UTM,
GDC and GCC. However, the transformations between the systems are left to the
GeoTransform portion of the GeoVRML code. Why transformations are needed is now
addressed, but the math behind doing the transformationsis not yet discussed. The
computation of these transformationsis significant. If these transformations are
computed or converted incorrectly, then objects and terrain will be rendered in the wrong
locations. In military applications, such problems canlead to disaster. To addressthis
concern, the geospatial software used in thisthesisis designed so that these
transformations are all done in an isolated package that can be validated as part of
another study or swapped out with a package that has been validated. The GeoTransform
package that is being used is freely available to download, view, and use. The end result
isthat all of the code built for and used in thisthesisis available freely on the Internet

without any significant restrictions on viewing or re-using source code.

Each of the six problems this thesis deals with depend on some or all of the
coordinate systems mentioned above. The first problem, translating height fields into 3D
rendered objects, depends upon trandating GDC and UTM coordinates into GCC
coordinates and then connecting the coordinates in the proper sequence. Calculating the
elevation of arbitrary positions depends upon defining a plane based on GDC or UTM
coordinates along with the height field to calcul ate the elevation of some point on that
plane. Calculating orientation at arbitrary positionsis similar except that the plane must
be defined in GCC coordinates and the normal calculated along with a rotation vector to
coincide with that normal. The fourth problem, calculating LOS based on height fields
requires using GDC or UTM coordinates to determine distances between elevation
postings so that angles representing possible lines of vision can be calculated and
compared. Calculating the LOS based on curvature of the earth is similar, but the height
field is not necessary since the horizon is far more significant. Finally, reducing the
number of polygonsin rendered terrain also involves calculating distances between
points and determining the minimum number of polygons needed to render the terrain.
Each of these problems are covered in detail in Chapter 111 and V.

C. MOTIVATION

Developing this thesis furthers military computer ssmulations. There are several
military simulations that are already rendered in 3D such as flight simulators and tank
gunnery trainers, but the bulk of current maneuver-training simulations are rendered from
a 2D top-down perspective. The techniques developed in this thesis are a foundation
upon which existing 2D simulations can be displayed in 3D or new maneuver ssmulations
canbe built in 3D. These techniques can aso be used in real-time applications such as
planning military operations and conducting visual rehearsals. However, sincethe
underlying GeoTransform package has not been validated, care should be taken when
using the code developed here in real-world applications. Either the GeoTransform
package must be validated or replaced by another validated package before even
considering using the work in this thesis for real-world military applications. 1f
validation does not occur, then any decisions about battle positions, artillery targets, or
any other decision regarding munitions effects or determining locations of cover should

be double checked with real-world reconnai ssance efforts.
3

Of course, products from this thesis can also benefit real-world military
operations in addition to simulations. Part of planning military operationsis Terrain
Visuaization. Army Field Manual 3-34-230 Topographic Operations [FM 3-34-230 p. 1-
3] defines Terrain Visualization as the process through which a commander sees the
terrain and understands its impact on the operation in which a military unitisinvolved.
Viewing the terrain in true 3D with forces arrayed on that terrain properly can assist the
commander in thistask. Currently, most units still do most if not al terrain analysis
using traditional 2D paper maps. Hereis adiagram from FM 3-34-230 depicting Terrain

Visualization.

i SaG2
Engineer Enemy situation rezponsibility
responsibility] k

Terrain

and

weather

iimn Friendly situation SAG3 .
responsibility responzibility

Figurel. Terrain visualization concepts [Army FM 3-34-230].

D. THESISORGANIZATION

Thisthesisis organized in four chapters. Thisfirst chapter provides an
introduction to the topics being discussed including the six mgjor areas of study. This
thesisisaimed at improving the rendering of 3D terrain based upon height fields and
placing objects on that terrain.

The second chapter focuses on the background material studied to complete this
work. Three geographic coordinate systems used to identify locations on a global scale
are studied: UTM, GDC, and GCC. Then, Digital Terrain Elevation Data (DTED), a
commonly used format for encoding data for height fields, is examined. Next, the
Extensible Markup Language (XML) is briefly discussed as atool for extracting height
values from DTED files and organizing them into objects that can be rendered. The
second chapter continues with a discussion of the Virtual Reality Modeling Language
(VRML) which is used as the rendering engine in this thesis. The engine contains
support for indexed face sets which are critical to thisthesis. An extensionto VRML
called GeoVRML is covered because it is needed for mapping global coordinatesin
VRML. Thisdiscussion concludes with an introduction to X3D, the next version of
VRML, and the corresponding X3D GeoSpatial component.

Chapter |11 describes the work donein thisthesis. Thisworksisdivided into
three sections each of which describes a program that handles part of the task of
rendering terrain and placing objects on that terrain in 3D. These subjects are the
GeoManager program which allows communication between terrain and objects placed
on that terrain, the GeoTerrainGrid program which renders terrain and does all
calculation of elevation and slope of terrain, and the GeoL ocation3 program which
objects use to place themselves on terrain automatically. All of the code iswrittenin
Java so that it can be used as VRML script files.

Chapter 1V contains conclusions and recommendations for future work. Under
the conclusions, the current abilities of the code built in thisthesis are reviewed along
with the limitations. The future works section lists five specific areas where this thesis
can be extended. The topics are discussed in order from the simplest to implement to the
most difficult.

THIS PAGE INTENTIONALLY LEFT BLANK

[I. BACKGROUND AND RELATED WORK

A. INTRODUCTION

This chapter begins by introducing three different coordinate systems for locating
positions on aglobal scale. Thefirst two (UTM and GDC) are common for real-world
navigational and cartographic uses while the third (GCC) is a computer specific system
for rendering geography. The next subject is Digital Terrain Elevation Dataor DTED
which isacommon and readily available military standard for storing data about terrain.
The Extensible Markup Language (XML) is then introduced as atool to help work with
DTED. Finally, X3D and the Virtua Reality Modeling Language (VRML), the
rendering engines that the code in this thesis uses, are described.
B. GEOGRAPHIC COORDINATE SYSTEMS

1 Latitude and Longitude

Latitude and longitude are a spherically based mapping system for the earth.
Imagine a coordinate axis being placed inside the earth with the origin at the earth’s
center. The x coordinate axis extends from the origin through the point where the equator
(latitude 0°) and the prime meridian (longitude 0°) meet. The positive z coordinate axis
extends from the origin through the North Pole. Finaly, the positive y axis extends out
from the origin so that it is perpendicul ar to the x-z plane and intersects the surface of the
earth in the eastern hemisphere (somewhere in the Indian Ocean). A drawing of this
coordinate axis system can be verified with the right-hand rule. Imagine grabbing the z
coordinate axis with the right hand such that the fingers curl around from the x-axis
toward they axis. If the thumb is pointing up aong the z coordinate axis, then the
coordinate system is properly placed. Thefollowing diagram (Figure 2) from the NPS
distributed learning module on maps and coordinates depicts this. The online tutorial
containing this diagram was created by James R. Clynch [Clynch website] and is located

at http://www.oc.nps.navy.mil/oc2902w/c mtutor/index.html .

Earth Fixed Cartesian Coordinates

X-Y Plane is Equatorial Plane
X On Prime Meridian
Z Polar Axis

Figure2. Depiction of earth with Cartesian axis

The latitude component of alatitude and longitude coordinate determines how far
north or south from the equator the location belongs. The range is from 0° to 90° and
refersto either north or south. Thus, 90° north is the North Pole and 90° south is the
South Pole. The equator issimply 0° and could be referred to as either north or south.
These degrees are further subdivided by sixtieths into minutes and seconds. One second
of latitude is equal to about 30 meters. One degree of latitude is likewise approximately
111 kilometers. These distances are constant all over the surface of the earth. Thus, any
specific latitude defines a circle around the earth that is a constant distance from the
eguator. Since the earth is a sphere, these circles get smaller the closer they are to the
poles where they reach a circumference of zero. Sometimes, systems prefer to use

negative values for southern hemisphere coordinates and positive values for the northern

hemisphere. This allows the values be stored strictly as numbers without needing an
additional character to hold the n or s designation.

The longitude component of alatitude and longitude coordinate determines a
semicircle that reaches from the North Pole to the South Pole. Since there is no natural
point of reference for these semicircles like there was for the equator, an arbitrary
reference point needs to be chosen. The Prime Meridian longitude 0° was chosen as the
longitudinal semicircle that travels through the observatory at Greenwich, England. The
rest of the earth is divided into 360 slices, each of whichis 1° wide. The dlicesare
numbered from 0° to 180° and thendesignated as east or west. Longitude 180° itself can
be designated east or west, and refers to the line of longitude directly opposite the Prime
Meridian. Like the latitude values, some systens prefer to simply use a number and
designate positive numbers as east and negative numbers as west. The following diagram
depicts the earth using latitude and longitude. Once again, this diagramcame from
[Clynch website].

=

S

Figure3. Earthwith latitude and longitude system

L atitude and longitude coordinates also frequently contain a height value referred
to as the height above sealevel. Technically, thisisnot accurate. The height refersto the
height above a model of the earth known as an ellipsoid. There are many ellipsoid
models to use, but in this thesis the most common one, WGS84, isused. Thisellipsoid is
used on most military maps and is the ellipsoid upon which DTED height values are
based. Using the height above the ellipsoid is much more intuitive than using the
distance from the center of the earth and the resulting numbers are much smaller alowing
them to be held as floating point numbers with reasonable accuracy. Floating point
numbers take only half as much memory as double precision variables making the files
holding large amounts of height data smaller. Asfor the reasonable accuracy, the
importance of that is presented in section E of this chapter.

10

Together, the latitude, longitude, and elevation (height) values locate a positionin
3D relative to the center of the earth. However, the coordinates must be converted to
GCC coordinates based on the geoid for a computer to render the point. The details of
how this conversion happens are beyond the scope of thisthesis. Instead, the
GeoTransform package from SRI that isincluded with GeoVRML isused. GeoVRML is
available freely on the web at www.geovrml.org. Using a separate software package for

conversions between coordinate systems has three advantages. First, the code for making
transformationsis all located in one location. Every place where atransform is needed
calls the same transformation routines guaranteeing the same results. Second, other
programs that work with geographic coordinates can use the same package and will
therefore get the same results. This helps make programs work together when analyzing
or displaying terrain and objects placed on that terrain. Finally, having all the
transformation code located in one package allows the code to be validated separately
from the programsthat use it. Once the code is validated, users have much greater
certainty that the programs that use the validated package are accurate. With military
applications, such validationisimportant. Likewise, if the package is not validated but
another transformation package is, then the validated package can replace the package
that is not validated with minimal changes to the program. For details about how these
transformations are done, the reader is referred to the GeoTransform package devel oped
by SRI [Web 3D Consortium GeoVRML specification

http://www.geovrml.org/geotransform/].

Latitude and longitude coordinates are an excellent way to define locations on the
earth because they are based on a spherical mapping system. However, latitude and
longitude can be difficult to work with when navigating and when running simulations.
The primary problem is that moving east and west (i.e. changing longitude) is difficult to
compute. If an object is at the equator and moving east at 30 meters per hour, then the
object is also moving one second of longitude per hour. Because longitude lines
converge as they approach the North of South Pole, an object moving at 30 meters per
hour east located at the same latitude as Washington, D.C., travels 1.25 seconds of
longitude per hour. The velocity isthe same, but the distance between lines of longitude

11

varies with latitude. Therefore, speed does not map to changesin longitude easily, and
distances are hard to determine based on changesin latitude and longitude coordinates.
To address these shortcomings, many mapping schemes have been built on distance-
based coordinate systems. The most common of these schemes is described in the next
section.

2. Universal Transverse Mercator (UTM)

In the Universal Transverse Mercator or UTM geographic coordinate system, the
earth is divided into grid zones so that coordinates are specified with northing and easting
values. The concept is that the northing and easting values are measured in meters
instead of degreeslike latitude and longitude. This benefits users who are interested in
quickly and easily measuring distances between points. In fact, the distance between two
UTM coordinates can be calculated using the Pythagorean Theorem taught in high school
algebra. With latitude and longitude, changes in longitude vary in distance as described
previoudy in thisthesis. Objects moving at known speeds can be tracked in UTM
coordinates easily. The speed can be broken down into an easterly speed and a northerly
speed. These speeds are multiplied by time to get distance which is then added to the
easting and northing values to get the new coordinate. The drawback to UTM
coordinates is that the system is not based on spherical coordinates. Instead, UTM
coordinates are simply a two dimensional mapping of the earth. Sincethe earthisa
sphere, some distortion occurs when mapping the curved surface of the earth to the flat
surface of UTM coordinates.

The amount of distortion introduced into UTM mappings s limited by mapping
sections of the earth to UTM individually. The earth is divided into 60 zones each of
which is 6 degrees of longitude wide. Zone 1 starts at 180 degrees west and proceeds
east for 6 degrees. These end up being narrow longitudinal zones that are approximately
667 km wide at the equator and narrower when closer to the poles. Inside a zone, the
fundamental grid square is 100 km wide by 100 km long. Since the zones are 667 km
wide at the equator, thissystem does have some grid squares that are truncated. At the
poles, the system changes even more as the poles actually have special zone numbers and
asomewhat different method of mapping the surface. Thisthesisis not going to describe
the UTM system in any greater detail than this. The rendering system used in this thesis

12

requires that the coordinates contain a northing value that is the distance in meters from
the equator (with southern hemisphere values being negative numbers), an easting value
that is the distance from the western edge of the current zone, and the zone number (1 to
60) for the zone of the coordinate. Technically, thereis aso aboolean value labeled
northern hemisphere. When true, the coordinate is in the northern hemisphere. This
allows the user to specify southern hemisphere locations without using negative numbers.
However, the variable can be left true and southern hemispheres coordinates can be
specified as negative numbers. The following diagram depicts the earth with the UTM
system superimposed on it. Thisdiagram is courtesy of Professor Steven Dutch, Natural
and Applied Sciences at the University of Wisconsin, Green Bay. The article containing
the diagram and more details about UTM is at [Dutch
http://www.uwgb.edu/dutchs/FieldM ethodsUTM System.htr] .

"

LT F]
Y,Z > B4H " 1ld
& o [f || |
t“ il : s .
N.d‘i:) K flay g a} 1
I ﬁl}hnff‘ l'll ":Jt IL as%
= it
:!'_':!:? ™ -] - :‘l':' - r’"‘r i A Ff %(3
|| b Ler] € 2 LY o S
% u?ﬁ" Lﬂf""ﬁi‘ |] ol ke &4 v
L "Tﬂ k g | | o u
_/.{},e‘ ‘? T %‘? e | 'Eg e 5 OF T
ﬁ"f i i 7] LS 5
g JTH L ¥ XA R
b ET L hTHEER] ! b e
A b o T ,..-:-L: Lk-; _P
LS T e e s
FE T L -, K il . M
e f T I JERERE" L
TITE y W LLE T K
1 J
SEANEE" : 14 [] H
7 !?5- F G
. ! L] F
AR C=72-80S AB>80S |E
f?Tfﬁ'ﬁ"'ﬁ'ﬁ-&gﬁﬁﬁﬁs 1111111111FE2222222233333333&%}%44%¢
el7lzlalal1lz|2]2]516] 7121510l 1|2) 2|4l lel7 2l al0l 112121 415 |6l 7|2 | alart)| 2| 3 4|6l |7 2 3 0l 11212 4] 5|6 LeE] alal 1 [2rere] s

|3
Figure4. Earth asdescribed by the UTM system.

3. GeoCentric Coordinate System (GCC)
Neither of the two previous coordinate systems can be displayed directly by the

3D rendering system used in thisthesis. To display coordinates or anything built from
13

those coordinates, they must be transformed into a 3D Cartesian coordinate system
(GCC). In GCC, each coordinate containsan X, Y, and Z vaue that together reference a
location in 3D space. GCC coordinates are generally only used for display purposes.
Tracking unitsin GCC is even more difficult than using latitude and longitude. For
example, consider an object circling the globe while moving east. In latitude and
longitude this means ssmply increasing the longitude being sure to keep the value within
the legal values. UTM isalittle more complicated because there are 60 zones that the
object will pass through as it goes around the world. In GCC coordinates, the X, Y, and
Z values will be changing with every move. However, GCC coordinates are useful for
calculating the orientation of objects that have aready been trandated to and placed in
GCC space. How GCC coordinates are used will be made clearer later in thisthesis.

C. DIGITAL TERRAIN ELEVATION DATA (DTED)

Digital Terrain Elevation Data (DTED) is adataset created under the direction of
the United States Department of Defense (DOD) to help map the earth. Simply put, the
National Imagery and Mapping Agency (NIMA) uses various methods to obtainthe
elevation above sea level of most areas of the planet. Theresult is a series of matrixes of
elevation postings spanning the globe at specific intervals. The lowest level of DTED
used in thisthesisisDTED level 1 which contains an elevation posting approximately
every 90 meters. Thisthesisalso utilizes DTED level 2 which has postings every 30
meters. Higher levels of DTED exist, but levels 1 and 2 are not classified and more
readily available than higher levels. DTED does not contain any data about the terrain it
covers other than spot elevations. Any other information must be estimated or obtained
from other sources. However, DTED elevation postings work well for building 3D
models of the terrain they cover. In building these models the landform, slope, and
terrain roughness are all approximated and displayed on the computer screen based on the
elevation postings that DTED provides. Of course, using higher levels of DTED data
gives better approximations and better looking 3D models. However, the amount of data
stored and modeled is increased significantly.

DTED datais stored in a standard binary format specified in M1L-PRF-89020A
dated 19 April 1996. Basically, the specification details the file structure for individual
DTED filesthat cover small areas of the earth. DTED is commonly distributed on CDs.

14

However, the earth is large and even at DTED level 1 requires numerous CDsto hold that
much data. Just to estimate this, the earth has a radius of approximately 6,300 km. Thus,
the surface area is approximately 500 million kn?®. At DTED level 1, this requires 50
billion height values for the ertire globe. If each height value is stored as a 4 byte single-
precision value, then 200 billion bytes are needed. Thus, DTED quickly can reach into
hundreds of gigabytes even at level 1. Level 2 has nine times as much data. However,
the oceans are always at sealevel so DTED typically does not store data for ocean areas —
only land masses. This reduces the total amount of data significantly so that the whole
world at DTED level 1 can be stored on most modern day hard drives. Trying to display
theentireworld at DTED level 1 at one time, though, is still beyond the capabilities of
today’ s computers because today’ s computers do not have the tens or hundreds of
gigabytes of RAM required to hold that much datain the computer’s memory. Therefore,
this thesis focuses on much smaller pieces of terrain so that most computers will be able
to render the examples. However, the code presented is capable of handling as much data
as the computer can store and display.

D. EXTENSIBLE MARKUP LANGUAGE (XML)

The DTED format isfairly efficient for storing the large amounts of data
generated. However, utilizing that data can be difficult due to the low level binary format
of DTED. Reading binary filesis difficult because an application program has to know
the format of the file byte-by-byte in order to reconstruct the higher level data structures
such as integers, floating point numbers, and strings. If the application programgets off
by one byte, then the program will typically crash or at least produce meaningless data.

A morerobust system might read afile for the user and break it up into its components
based on information contained in the file itself. The user might then simply ask for the
dimensions of the data, the location of the datain the world, and the height field values
without worrying about how many bytes constitute each height value or location

parameter.

The Extensible Markup Language (XML) was designed to meet this need and
more. XML isamarkup language for data which means that datais stored along with
some information that describes the data. The data is enclosed in matching tags that
describe the data. For example, aheight field of four values could look like this:

15

<heightField>1000 1002 998 1001</heightField>

This data has an opening height field tag <heightField> and a closing height field tag
</heightField> with four height values between them. An XML parser reads this data
and stores the four values with the name heightField. If an application asked for the
heightField, then the parser would pass the four values to the application. The
application does not have to know anything about how the four height values were stored
in the file because the XML parser handles all those details. The application’s
responsibility isto know what to do with the height values. Attributes can also be stored
within these element tags that provide more data or provide metadata (data describing the
data). There can be tags that give the application information about what DTED level the
datais stored in and what coordinates the height dataislocated at in the world or there
could be attributes that store this data. Either system makes the data available to the user.
Using XML alows the application writer to focus more on the data and how it is used
without worrying about how the datais stored and retrieved.

Of course, XML does more than just store and retrieve data. XML can also be
used to validate data files and to transform data files into other formats. Validating files
uses atechnology caled XML Schema, typically stored as XML Schema Documents
(XSD). Basicadly, an XSD fileis created to describe the structure of specific XML
documents so the contents can be checked and validated for the proper form. For
example, an XSD document could check that all elevation postings are within height field
tags and that all the information required is present. The template file can even make
sure that data follows specific rules such as integers only or values within a certain range,
etc. However, thistechnology is not directly used in thisthesis. It is mentioned because
the technology can be useful in future applications that use the techniques and code from
thisthesisin larger terrain-rendering projects. An application that uses networking to
handle terrain between several computers might be a good example.

Another powerful feature of XML isits ability to transform data from one format
to another. Thistechnology is called Extensible Stylesheet Language for
Transformations (XSLT). Using XSLT, terrain datafiles can be customized for specific
applications. Thisthesis used one such transformation devel oped by Captain James

16

Neushul, a student at the Naval Postgraduate School at the time this thesis was written.
CPT Neushul’ s code reads DTED files, parses them, and constructs renderable scene files
written in X3D or VRML, both of which will be discussed later in this chapter. Thefiles
produced are scene graphs that when run using an X3D or VRML browser create a
geoElevationGrid described in the next section which covers VRML [Neushel 2003].
This thesis uses these files as a starting point, and then investigates how the terrain datais
rendered into 3D objects and how objects can be placed on thisterrain. The datain these
files are the same elevation postings found in the original DTED files; it has ssimply been
transformed into aformat that is easier to work with. Thisway, more effort is spent on
rendering issues while avoiding input/output issues involved in parsing binary files.
E. X3D AND THE VIRTUAL REALITY MODELING LANGUAGE (VRML)

A rendering engine is a program that takes a description of objectsin 3D and
actually draws the pixels on the screen that make a picture of the 3D scene described.
The math behind these conversions is complicated and beyond the scope of thisthesis.
VRML was thefirst popular 3D rendering language built specifically for the internet.
VRML programs are called “world” files and they end with the extension .wrl. When
executed, the VRML program renders a 3D scene inside aweb browser such as Internet
Explorer or Netscape Navigator. Extensible 3D Graphics (X3D) isanew version of
VRML. X3D currently has to be transformed through XSLT before viewing as VRML,
and native X3D rendering engines are beginning to appear. The specification for X3d is
available at www.web3d.org/x3d.

1 VRML GraphicsBasics

To display VRML programs, users must download a plug-in for their browser that

includesaVRML rendering engine. Several are available free of charge such asthe

Cortona player at www.parallelgraphics.com/products/cortona. The Web3D Repository

has numerous links to browser plug-ins and other useful VRML tools at

http://www.web3d.org/vrml/vrml.htm. The VRML language allows the user to build a

scene graph that describes a 3D scene. The VRML world is built on a3D Cartesian
coordinate system that follows the right hand rule and has the origin at its center.
Initially, the positive X-axisis to the right, the positive Y-axis is up, and the positive Z-

axis comes out of the screen. The figure 5 illustrates this using a coordinate axis scene

17

found at
http://web.nps.navy.mil/~brutzman/Savage/Tools/Authoring/ pages/page03.html .

L= L3 -0 —

; g
Figure5. Right-handed coordinate axes showing VRML/X3D coordinate spéce

Users define shapes out of existing primitives such as spheres and boxes or out of
polygons built from coordinates. The coordinates are floating point values or single
precision values. VRML aso provides ample support for coloring objects, applying
textures to objects, and placing lights in the scene. There are position interpolators that
move objects around based on key frame positions and timers. Likewise, there are touch
sensors and proximity sensors that allow interaction. There are even video and sound
objects. The current X3D specification also added keyboard support. In short, the
language has most if not all of the components needed to make complicated scenes that

have user interaction.

A detailed explanation of how to build 3D scenesin VRML isavailablein [Ames
1997] that describes every node built into VRML 97 in detail. Another excellent

18

resource is the website www.vrmlsite.comwhere numerous articles about VRML are
stored. Likewise, information about X3D isavailable at http://www.web3d.org/x3d.html

with many example models and scenes at
http://web.nps.navy.mil/~brutzman/Savage/contents.html .

Examples that show the power of X3D/VRML to render detailed objects follows.
These objects are true 3D objects that can be viewed from any angle interactively. This

thesis devel ops a method to place objects, such as these examples, on large-scale

landscapes using standard geographic coordinates.

L e (R LT
®

(3 R P L. o e D R
AT] 10 L ey T A T Y W T G-l e o M . | P (Links =

[]

Figure6. AV-8B Harrier by Miguel Ayalaat
[http://web.nps.navy.mil/~brutzman/Savage/AircraftFixedWing/AV 8B-Harrier-

UnitedStates/_pages/page01.html |

Figure 6 isamode of US AV-8B Harrier aircraft. Thismodel can beusedina
true 3D military simulation to make the system more visually realistic than the more
common 2D simulation systems with 2D icons. Here are some ground-vehicle examples

that also come from the SAVAGE collection.
19

wr inhbrgfdahicined - Miomssl [nbernlk Explorer

i - TTT M

[http://web.nps.navy.mil/~brutzman/Savage/ GroundV ehiclesM 2A 3/ pages/page04.html]

There are also models of Soviet built equipment. This T-72 tank could be used

for enemy forcesin a 3D battle.

20

Fls BN Vv Cowim Tk Hip ®
Qo v e] 2] e e, e 5| (e T

d o

Figure8. Soviet built T-72M tank by Joseph Chacon
[http://web.nps.navy.mil/~brutzman/Savage/GroundV ehicles/T72M/chapter.html]

Of course, there are limitationsto VRML. This next section addresses four
significant limitations to VRML scene graphs that were encountered during the
development of this thesis that are not typically addressed in VRML text books.

The first significant limitation is VRML’ s lack of function or method calls.
VRML has script files that can receive data from the scene graph, perform computations,
and output data back to the scene graph. In fact, the script files can actually modify the
scene graph. However, modifying the scene graph is complicated and still does not allow
scripts to communicate with each other like function callsdo. Datais passed around
between objectsin a VRML scene graph through the ROUTE command. Unfortunately,
ROUTE commands are one way and anonymous. This means that a point of input for a
ROUTE command cannot tell where the call came from and cannot return any data.
Function calls would allow several objects in the code to call afunction and send data

21

with each function call. Inthisthesis, objects are placed on terrain with the object’s
elevation and orientation determined by code. Typically, there will be several segmerts
of terrain in the scene. Each segment is an independent object. So, an object moving
around within the scene can cross over several terrain segments. However, the object’s
position must be routed to/from a single terrain segment. When the object moves from
one object to another, the ROUTE statements involved would have to be changed to point
to the new terrain segment. This thesis overcomes this limitation by placing such
functionality in aJava script. Thus, how the code in this thesis works is not readily
apparent to X3D/VRML programmers by looking at the scene graph. Fortunately, the
solution does alow the user to work solely with the VRML code without requiring any
further Java programming. Another important caveat for future work isthat such code

follows VRML 97 scripting conventions.

The second limitation is the limitations imposed on the user because VRML
rendering engines run inside aweb browser. Web browsers are designed to work with
the internet extensively. Since the internet is known to have plenty of viruses, Trojan
horses, and other nasty surprises, web browsers have alot of built in security. One of the
primary security measuresisto limit the activities that the browser, and thus web sites,
can do. For example, web browsers do not allow programs that they are running to
access the hard drive directly. Doing so would allow web sites to place viruses on the
user’s computer at will without the user knowing. This does not mean that there is no
accessto local disk at all, though. A VRML scene graph can have an Inline command in
it that instructs the web browser to load another .wrl file into the current scene. The .wrl
file could be on the local hard drive or on the internet and the browser will attempt to
complete the task. However, thisisindirect accessto the hard drive. The VRML
programmer can only specify that additional scene graph data needs to be added to the
current scene graph with the Inline command. The fact that this sometimes requires the
browser to access the local hard drive protects the end user by only allowing the browser,
not the VRML programmer, to access the local drive. Likewise, programs running inside
aweb browser cannot open up sockets on a network to communicate with other
computers except under very controlled conditions. The only exception that the author
has seen to this policy iswith Microsoft’s Internet Explorer which allows a program

22

running under a browser to open sockets when the code for the program is locally stored
inaJavajar filethat islocated on the current PATH environment variable. Normally,
though, the program is only able to communicate small messages with the web site the
program came from. The result of thisis limiting the ability of any program running in a
web browser, to include VRML and X3D programs, to request, retrieve, and send data.
Since rendering terrain requires alot of data, this situation hurts this thesis project. The
examples included with this thesis place al the necessary code and data on the client
computer ahead of time so that the programs run without the user having to reduce the
security settings on his or her computer. A new rendering engine called Xj3D, located at
www.web3d.org/ TaskGroups/source/xj 3d.html , can operate as a stand-alone application

that can render X3D/VRML, access the local hard drive, and open sockets over the
internet. The program is currently still in development at Milestone 8, but it has
demonstrated a powerful rendering engine that is fully compatible with existing VRML
2.0 models and scenes. Thislocally loaded and launched application is able to access
both the hard drive and the internet so that terrain data can be downloaded, stored, and
used at runtime.

The third limitation is a performance limitation. Thisissueis definitely arguable,
but this author believes that VRML has some flaws that undermine the system’s potential
performance. Most 3D scenes cannot be built out of primitive shapes such as spheres,
cones, cylinders, and boxes. The real world isjust simply not set up that way. So, users
have to build 3D models of the objects in the world manually. Building these objects
requires defining polygons or faces that are used to build whole objects. Most rendering
engines give the user options when building these faces. For example, in OpenGL, the
user can build objects out of triangle strips, triangle fans, quads, quad strips, polygons,
and more. In VRML, the only construct is the indexed face set in which the user defines
individual polygons. How to build an indexed face set is covered in more detail in the
next chapter. OpenGL gives the user severa options because some of the methods of
building polygons, such as triangle strips and triangle fans, are rendered much more
efficiently than plain polygons. VRML does not let the user help the rendering engine by
providing it some optimized polygon constructs. The VRML indexed face set does not
even force the user to define polygons that are coplanar and convex. If the user builds

23

polygons that are not coplanar and not convex, then the VRML rendering engine is
forced to break the polygons up into smaller polygons that are coplanar and convex.
These features can be helpful to novice graphics programmers, but intermediate to
advanced programmers will be much more interested in performance and will be willing
to build objects out of more efficient triangle fans and stripsif it means better
performance. VRML does not even present this as an option.

The fourth limitation is the lack of support for double-precision variables. VRML
only supports single-precision variables or float variables. VRML was built to work over
the internet which is very slow at transferring data when compared to hard drive and
direct memory access speeds. The internet was even slower during the 1990’ s when
VRML was developed. Single-precision variables take only half as much memory as
double-precision variables. So, by limiting data to single precision variables, VRML
files are smaller and easier to download. This may be part of the reason why VRML only
supports single-precision variables. Another possibility isthat the designers envisioned
VRML being used for relatively small scenes where single-precision values are precise
enough to accurately place and render the objects. Whatever the reason for the exclusion
of double-precision values, the limitation exists. The result isthat defining sceneson a
planetary scale cannot be done accurately enough to prevent visua artifacts. Once again,
X3D is addressing this limitation. The X3D specification calls for support of both single
and double-precision variables. So, once native X3D rendering engines are available,
double precision variables will be available. Until then, though, the geoVRML extension
to VRML will have to suffice.

2. GeoVRML Extensions

GeoVRML isan extension to VRML developed primarily by Dr. Martin Reddy of
SRI. The purpose of GeoVRML isto alow VRML to render scenes on aglobal scale.
The GeoVRML extension can be downloaded and installed royalty free from
http://www.geovrml.org/1.1/download. Here are some examples of the types of scenes
that can be created using the GeoVRML extension.

Figure 9 shows Squaw Valley built from a height field with texture maps and was

taken from http://www.ai .sri.com/~reddy/geovrml/exampl es/squaw/squaw.wrl. Texture

maps alone can make arealistic looking scene. However, placing the texture maps over a
24

3D representation of the terrain as shown makes the scene much more redlistic as the
mountains and valleys are shown at their true scale.

» ril - Blicroan|t Srbarret Exporer

Figure9. Sguaw Valley by Martin Reddy
[http://www.ai .sri.com/~reddy/geovrml/exampl es/squaw/squaw.wrl]

Rendering global scenes requires double-precision variables, so GeoVRML stores
double-precision values as strings and converts them to double-precision variablesinside
Java code when needed. The solution works quite well, but several VRML had to be
replaced by new GeoVRML nodes. These nodes work with the double-precision values
stored as strings and the GeoVRML package to build scenes on aglobal scale. These
scenes are then transformed into single-precision values that the VRML rendering engine
can display. Basically, the GeoVRML package takes geographic positions specified in
latitude and longitude or in UTM, converts them into Geocentric Coordinates, and then
trandates them into a local frame that can be stored in single-precision variables. This

deserves a more extensive |ook.

25

First, there are some settings that GeoVRML depends upon to do conversions.
Thefirst is the GeoSystem setting. This setting refers to the coordinate system a
particular string isin. For example, alatitude and longitude grid uses a GeoSystem of
“GD” or “GDC”. The GeoSystem can also specify the geoid such as “WE” which isthe
default geoid and the most common. The final GeoSystem variable would look like “GD
WE” or “GD” “WE”". Alternatively, UTM coordinates could be specified with “UTM
Z10" to specify aUTM coordinate in zone 10 or “UTM” “Z10”. Of course, any of the 60
zones can be specified. Finally, a geocentric coordinate can be specified with a
GeoSystem of “GCC” or “GC”, but this should be avoided because the systemis only
present to allow the computer to render the scene. GCC coordinates are very difficult for
people to work with. Users should always let GeoVRML convert coordinates to GCC so
that they are consistent with all other GCC coordinates that GeoVRML automatically
generates behind the scenes. Here are some example coordinates with the appropriate
GeoSystem.

Latitude and Longitude Example:
geoSystem “GD”, “WE”
position “29.7118644 52.6271186 0"
Universal Transverse Mercator Example:
geoSystem “UTM”, “Z13”
position “ 4039260 455220 0"

Notice that each position has three numbers. In the first example, these numbers
are the latitude, longitude, and elevation. In the second example, the numbers are the
northing, easting, and elevation. | could not find the limit on how many characters can be
placed in one string, it could vary from browser to browser, but rest assured that strings
can hold a significant number of digits allowing enough precision in the coordinates.
Note that all of the numbersin the examples are within the range of values asingle-
precision variable can hold. Infact, the UTM example uses integers which can be held
exactly in integer variables. The catch is that floating point numbers such as single-

precision numbers are not stored asintegers. Instead, the above UTM coordinates are

26

stored as 4.039260E6, 4.55220E5, 0.0EO when stored as float variables, just like the
latitude and longitude values. So, the question is how accurate is the fractional value?
Here is where the numbers get confusing. The problem is that the computer stores values
in binary while people use decimal values. The two systems do not map well when
decima points are involved. For example, if one bit is used to hold the value after a
decimal, then it can only hold two values: .0 and .5. If two bits are used, then four values
arepossible: .0, .25, .5, and .75. Notice that there are gaps between these numbers that
can be represented by decimal values. Thisiswhere accuracy islost. Take the example
with two bits of precision trying to represent the decimal number .3. The closest
representation is .25 which is far enough off to make a noticeable difference. Single-
precision numbers use 32 bits to store the exponent and the fraction together. This results
in alot more precision than the 2 bit example, in fact, there is enough precision to
represent anything in the screen space of even high end displays of 1600 by 1200 pixels.
However, when coordinates are specified on a global scale, single-precision numbers are
not sufficient. The bottom lineisthat with single-precision values, coordinates can only
be specified to about 8 meters of resolutionwhen specifying coordinates in terms of
latitude and longitude or UTM. This means that when an object’ s location is specified, it
can be displayed up to 8 meters from the exact location specified due to lost precision.
What is even worse is that the object’ s location can move around as the viewpoint
changes within the 8 meter radius of its actual specified location. Double-precision
variables, however, increase the accuracy almost to the microscopic level of precision at
aglobal level.

The second setting that GeoVRML depends upon for properly rendering terrain
on ageographic scalein called the GeoOrigin. The GeoCrigin is areference point that
all the coordinates calculated are offset against. What this meansis that this point is
converted to GCC space. Then, the X, Y, and Z values of this GCC coordinate are
subtracted from the X, Y, and Z values of every point that is created for the scene. This
effectively strips away most of the value leaving afractional value that can be held within
asingle-precision variable. For example, assume that a GeoOrigin's X value was
calculated to be 6,132,248.1643872 and is held in a double-precision variable. A
coordinate is then calculated with an X value of 6,132,074.732843. The X valuefor this

27

coordinate cannot be held in a single-precision variable without losing precision.
However, when the GeoOrigin's X value is subtracted from it, the result is -173.4315442
which can be stored in a single-precision variable with alot more accuracy. This final
valueiswhat is passed back to the VRML rendering engine as the X value for that
coordinate. GeoVRML does this trandlation to every coordinate value including the
coordinate values that define where the viewpoint into the sceneis. Theresult isthat the
particular portion of the earth that the scene is rendering is shifted much closer to the
origin of the screen space. Thiseiminates alot of the digitsin the values leaving them
small enough to be stored in single-precision variables. Aslong as the GeoOrigin chosen
is close enough to the coordinates in the scene, the final translated coordinate values will
be accurate enough to produce a correctly rendered scene. So, the best choice for a
GeoOrigin isonethat is close to the center of the scene. However, choosing a GeoOrigin
that islocated at an extreme corner of the sceneistypically close enough. The only
remaining question with the GeoOrigin is what to use when the whole planet needs to be
displayed? The answer isto use a GCC coordinate with zeros for the X, Y, and Z values.
Thisisthe center of the earth and one of the few times when entering avaluein GCC
coordinates makes sense. Thiswill result in the GeoOrigin's X, Y, and Z values being 0.
So, when coordinates have these values subtracted from them there is no change. This
resultsin aloss of precision when casting the double-precision values to single-precision.
However, the loss ends up being less than a pixel in screen space when the viewpoint is

far enough away from the earth for the entire planet to be displayed at one time.

Now for some details about how the GeoVRML code works. There are script
filesfor most of the nodes in the GeoVRML extension such as Geol ocation,
GeoPositionlnterpolator, GeoElevationGrid, etc. However, these script files are all
dependent upon the geovrml.class Javafile to perform their operations and work together.
Therefore, thisthesisis focused on this particular classfile. There are five groups of
methods that constitute most of the functionality of the class. First, there are the methods
that determine the GeoOrigin. These are the setOrigin and getOrigin methods. The
setOrigin method takes a string representing the coordinates of the GeoOrigin and
another string representing the GeoSystem. A GCC coordinate is calculated from these
values and stored in aclass variable. The getOrigin method returns the contents of the

28

origin as a GCC coordinate. Whenever a GeoVRML object is created, setOrigin must be
called to initialize the object before any other operations are used.

The second group of methods is the getCoord and getCoords methods. These
methods are used to transform coordinates that are in latitude and longitude or in UTM to
GCC. Once the conversion is completed, the current GeoOrigin is subtracted from the
values of the GCC coordinate. These methods are the only methods that should be used
to determine GCC coordinates. There are three versions of both of these methods that

allow the user to specify the parameters in different forms.

Third, are the geoCoords methods. These methods do the opposite of the
getCoord methods. These methods take GCC coordinates and transform them back into
UTM or latitude and longitude. Once again, any time a GCC coordinate needs to be
converted, these methods should be used because they properly reapply the GeoOrigin to
the coordinates before transforming them. Also like the getCoord methods, there are
three geoCoords methods that accept various parameters.

The fourth group of methods is the getL ocal Orientation methods. These methods
are not used very often. In fact, the GeolL ocation and GeoViewpoint nodes appear to be
the only nodes that use these methods. However, the methods are extremely important.
These methods cal cul ate a rotation vector and angl e that will orient the viewpoint so that
the terrain appears right-side-up. The problem is that when a viewpoint isfocused on a
small area of the planet, the positive Y direction will probably not represent “up”. Take
for example the South Pole. If youlook directly at a globe, the South Poleis at the
bottom of the globe and “up” from the South Pole is actually toward the floor of the room
the globeisin. Therefore, the viewpoint must be turned upside down when viewing
terrain at the South Pole. Likewise, “up” along the equator is parallé to the floor of the
same room. Using one of the getL ocal Orientation methods returns a VRML rotation
node that will orient anything it is applied to so that the object’ s previous “up” direction

(the positive Y direction for most models) will not be pointing in an unrealistic direction.

The fifth and final group of important methods is the VRML ToString methods.
These methods convert VRML strings to Java strings. Actually, only the VRMLToString
method that takes an MFString parameter isimportant. For SFString variables, just

29

simply calling the getVaue method of the SFString is sufficient. With the MFString
variables, though, an error can result using certain browser plug-ins. Just be careful not
to use the toString methods of VRML string objects. These always contain quotation
marks which must then be manually stripped out. Using getVaue or VRMLToString is

much easier.

Working with GeoVRML can be very simple. Simply remember to set the
GeoOrigin first. Then use getCoord or getCoords to convert coordinates to GCC so that
they can be displayed by the VRML rendering engine, and to always take GCC
coordinates back to UTM or latitude and longitude using the geoCoords method. Finally,
remember to use the getL ocal Orientation method to get a rotation node for viewpoints
and objects so that they appear right-side-up in the scene. Thisisafairly complete
toolkit. All that isreally lacking is support for transforming coordinates from UTM to
latitude and longitude and vice versa. This thesis adds functionality to the GeoVRML
extension to VRML, but al of the additional functionality is at alevel above this class.
The script nodes developed for this thesis are as dependent upon the GeoVRML class as
the nodes provided in GeoVRML 1.1.

3. X3D Specification

X3D represents the next generation of interactive 3D graphics designed for the
Web. The specification is compliant with XML which brings benefits such as the ability
to trandlate X3D files to other formats with XSLT. Currently, thisis used to trandate
X3D filesto VRML filesfor display in VRML-enabled web browsers. Likewise, X3D
files can be validated using XML schemas. The specification is available at
http://www.web3d.org by following the link to specifications. The specification

currently defines over 130 nodes for building 3D scenes. Readers are encouraged to visit
the site and read the specification. The actual X3D editor is available from the same
website at www.web3d.org/TaskGroups/x3d/transl ation/READM E. X 3D-Edit.html .

30

|l (R T e W [, B (el = i (0
= | = s peme s - et B

[L]
Er=mmre

T11 ! I

sEEENEN sl

Figure 10. X3D-Edit main screen [http://www.web3d.org/x3d.html] .

A native X3D rendering engine is being built called Xj3D. The project isan open
source project whose home s currently located at

http://www.web3d.org/TaskGroups/source/xj3d.html . At the time of thiswriting, version

7 was available with version 8 in abeta state. The project isanative X3D engine.
F. SUMMARY

This chapter discussed how positions on the earth are described using three
separate systems. The first two are common geographic referencing systems used all
around the world while the third was a computer specific system needed to help the
computer render geographic scenes. Next, DTED, a common source of terrain elevation
data, was explored as a basis for building 3D models of terrain. XML was then
introduced as a technology that can help make accessing and validating terrain data easier

31

and more universal. Finally, X3D and VRML were discussed. These two rendering
engines are needed to actually create the visual displays from the 3D models that this
thesis dealswith.

32

[11. TERRAIN RENDERING ALGORITHM IMPLEMENTATION

A. INTRODUCTION

This section details the code that was developed for thisthesis. First, the
GeoManager is introduced which allows multiple pieces of terrain to be loaded and used
with minimal effort and which allows objects to access the data in the pieces of terrain
through a GeoL ocation3 object. Second, the GeoTerrainGrid is described which does the
majority of the work covered in thisthesisin particular, building the 3D model of a
section of terrain and calculating the elevation and orientation of arbitrary positions on
thisterrain. Finally, the GeolL ocation3 node is covered which allows objects to use the
technology devel oped.
B. GEOMANAGER

In the previous chapter, a Java solution to VRML’s lack of support for function
callswasintroduced. Thissolution isthe GeoManager object. The GeoManager object
provides away for the GeolL ocation3 object to locate a GeoTerrainGrid that holds terrain
datafor a specific location defined in GDC or UTM coordinates. For thisto work, the
GeoManager must be able to reach all the GeoTerrainGrids in the scene and every
GeoL ocation3 must be able to reach the GeoManager. The system also depends upon
only one GeoManager existing within the scene. In order to ensure that only one
GeoManager exists, the constructor had to be private. With a private constructor,
instances of GeoManager can only be created from within the GeoManager class. Thus,
apublic, static classis needed that creates one and only one instance of a GeoManager.
The getGeoManager method does this. The first object that calls getGeoManager causes
anew GeoManager to be created and returned. All subsequent calls to getGeoM anager
return the same GeoManager instance without creating anew one. Every
GeoTerrainGrid and GeoL ocation3 object can call getGeoManager because the method is
static.

Inside the GeoM anager class, there are methods written specifically for
GeoTerrainGrids and GeolL ocation3 objects. For GeoTerrainGrids, there is addGrid
which allows a GeoTerrainGrid to announce its existence to the GeoManager. Every

time this method is called, the GeoManager stores a reference to that GeoTerrainGrid in a
33

vector. Every GeoTerrainGrid must call this method when created so that the
GeoManager can reach every GeoTerrainGrid in the scene. The method for

GeoL ocation3 objects is the getGrid method. This method takes a location as a
Gdc_Coord_3d, which holds latitude and longitude values, and returns a GeoTerrainGrid
that contains that location. This alows GeolL ocation3 to get a GeoTerrainGrid and use it
to determine the proper elevation and orientation. These function calls are shown in
Figure 11. There are more methods in GeoManager, but those were specifically written
for an experiment where a military simulation was listened to and displayed in 3D. The
experiment was successful for afew entities, but more work is needed on dynamically
loading and unloading large numbers of GeoTerrainGrids and entities such as tanks and
helicopters before the code will be useful to the military. The SAVAGE website will

containfuture versions of this code to address these i ssues.

1) At creation, every
GeoTerrainGrid registers
with addGrid()

GeoManager

getGeoManager()
2) Registering places a | addGrid(GeoTerrainGrid)

reference to the TerrainGrid y 9etGrid(Gdc_Coord_3d)
in grids Vector grids

3) When a Geolocation3
object needs a grid, it
Calls getGrid

Figure11. Depiction of how GeoManager is accessed

C. GEOTERRAINGRID NODE

The GeoTerrainGrid object is responsible for actually rendering a piece of terrain
based on aheight grid and for providing elevation and orientation data for objects that
reside within the boundaries of the grid. There are three major functions that this code
performs. Thefirst is creating an indexed face set that represents the terrain described by
the height field. The second is determining the elevation at an arbitrary point within the
boundaries of the grid. The third and last is determining the proper rotation to apply to an
object so that it is placed properly on the terrain. Each of these functionsis covered in its
own section. The GeoTerrainGrid is a direct descendent of the GeoElevationGrid

34

contained in the GeoVRML extension to VRML. All of the original GeoElevationGrid
codeis still in GeoTerrainGrid, although some of it had to be commented out with new
code replacing it. All of the changes are clearly marked. Here are the major changes
made in GeoTerrainGrid. First, GeoTerrainGrids are capable of working with
GeoManagers so that objects can travel across several GeoTerrainGrids effortlessly.
Second, the elevation of any location within the boundaries of the GeoTerrainGrid can be
estimated and retrieved (if the location coincides with an elevation posting, then the exact
location is given). Third, arotation vector can be retrieved that will rotate an object to
align its up vector with the normal of the terrain at that location. Finally, the indexed
face set, coordinate list, and height fields are not stored at class level anymore. Instead,
they are retrieved when needed. This significantly reduces the memory footprint of a
GeoTerrainGrid over a GeoElevationGrid, but does incur some overhead every time data
needsto beretrieved. These savings quickly become significant inthe example
GeoTerrainGrids built in thisthesis. Every sample GeoTerrainGrid in this thesis covers
an areathat is approximately 1.8 km by 1.8 kmin DTED level 2 data. The height fields
have 3,721 entries total including both axis. These are single-precision floating point
values taking 4 bytes each. Thus, each height field fills 14.5 kilobytes of memory. The
indexed face sets built from these height fields have 3,721 coordinates, one coordinate
built from each height field value. Every coordinate hasan X, Y, and Z value that isa 4
byte, single-precision floating point value. Thus, the coordinate list occupies 43.6
kilobytes of memory. The coordinate list of every indexed face set requires 4 integers for
each triangle. Since the height array builds a grid that is 60 squares by 60 squares, 7,200
triangles are needed. Thisisanother 112.5 kilobytes of data. Thus, each GeoTerrainGrid
built for this thesis requires 14.5 kilobytes for the height array, 43.6 kilobytes for the
coordinate list, and 112.5 kilobytes for the coordinate list. The total is 170.6 kilobytes for
al8kmby 1.8 kmarea. When the GeoTerrainGrid is built, there are two copies of all
these data structures, one in the VRML data and one in the Java code. To save memory,
the Java script code dropsiits copy of the data when finished saving 170.6 kilobytes. The
multiple grid example has 16 GeoTerrainGrids and saves 2.73 megabytes of memory
using this technique. Of course, one copy of the data still exists within the VRML code
and is retrieved by the Java script code when needed.

35

Here are two screen shots of GeoTerrainGrids. Figure 12 shows shaded terrain.
L L ELE=

Figure12. GeoTerrainGrid example with shaded terrain

Figure 13 shows the same terrain in wire frame mode. In this view, how the
elevation grid isbuilt out of triangles is apparent. Notice how the shaded terrain isvery
smooth despite being created by triangles with straight edges.

36

£ ParslisiGraphios Comons Conbrol .Hﬂﬁ T ﬁll

Figure13. GeoTerrainGrid shown in wire-frame mode

1 Building an Indexed Face Set froma Height Array

A height array is simply an ordered list of numbers where every number
corresponds to a measured elevation point on a surveyed piece of terrain. The height
values are typically taken at evenly spaced intervals that coincide with one of the
geographic coordinate systems described in the previous chapter such as latitude and
longitude. Note that GeoCentric Coordinates do not work because there is no elevation
component. Thethree valuesof X, Y, and Z are all required to determine a position.
None of these corresponds to height. The height isimplicitly contained in the coordinate,
but creating coordinates based only on a height field and a start point is not possible.
Therefore, the height arrays in this thesis must be based on latitude and longitude values
or UTM values. The GeoElevationGrid that the GeoTerrainGrid descends from has this
same requirement. If the height values from the height array are arranged in accordance
with their geographic coordinates, then a checkerboard pattern forms with every corner of
each sguare of the checkerboard being a height value. Building an indexed face set from

37

this height array is simply a matter of connecting the dots of height valuesin this
checkerboard pattern in the proper order.

by Position

Grid Forms a /

Checkerboard
Pattern

Grid Broken
Into Triangles

Figure 14. How aheight array isturned into an i ndexed face set

2N

Determining the proper order for connecting the points of an array of height
values requires some knowledge of computer graphics. In order for a computer to render
an indexed face set, each face in that set must represent a convex polygon where all
vertices are coplanar. Some graphics engines, such as VRML discussed in the previous
chapter, relax these rules for the end user, but these engines are then forced to break up
the polygons provided by the user into smaller polygons that are convex and coplanar.
The ssimplest method for building polygons that are guaranteed to be coplanar and convex
isto build triangles. When building an indexed face set from a height array, individual
triangles, triangle strips, or triangle fans are generally used. Thisthesis uses individual
triangles because VRML does not explicitly support triangle strips or fans. The
individual triangles are al still part of an indexed face set and are connected to each other

38

because they share vertices. Therefore, the final rendering looks the same as one from
triangle strips because the individual triangles were built in the same fashion. Each
sguare of the before mentioned checkerboard is divided into two triangles. Thefirst
triangle goes from the bottomtleft corner to the upper-right corner to the upper-left
corner. The second triangle goes from the bottomleft corner to the bottom-right corner
to the upper-right triangle. When every square in the checkerboard is divided up in this
fashion, a complete indexed face set is built that when sent through a rendering engine

will graphically depict the terrain in 3D space.

2

4

Figure 15. Building a grid square as two triangles

Building the indexed face set is accomplished using two for loops with one nested
within the other. These for loops step through the entire array of height values one value
at atime building one coordinate for each elevation posting. The for loop uses a hel per
method in the GeoVRML class called addCoord. The method issimple, it takes the
geoGridOriginArray passed to it, which represents the south west corner of the
GeoTerrainGrid that must be set by the user when defining the GeoTerrainGrid node, and
adds the values for the change in the X and Z directions. All this method doesisfill the
array passed to it called new_coord. The geoGridOriginArray’s X and Z values are
added to the values of the offsets for X and Z passed in. The elevation is also the
addition of the elevation from the height array and the elevation of the

39

geoGridOriginArray. So, if DTED is used, then the user must always be sure to set the
elevation of the geoGridOriginArray to zero to prevent artificially raising the terrain
elevations. These additions are so simple that placing them in a special method in
another class seems inefficient when compared to just placing the three lines of codein
the method in the nested for loop instead. Being in a nested for loop causes this method
to be called potentially thousands of times. Eliminating the overhead of thousands of
method calls makes the code execute faster. After addCoord calcul ates the correct values
for X, Z, and elevation, the getCoord method is used to convert this coordinate to a
Geocentric coordinate. This converts the coordinate to GCC and applies the GeoOrigin
so that the value can be stored in a single-precision variable without losing significant
precision (considering the GeoOrigin is close enough to the coordinate). The coordinate
isthen stored in an array that holds all the coordinates. Likewise, alist of texture points
is also updated. However, the texture points are confusing because specifying such alist
isusually only needed if the texture map is not supposed to be mapped exactly to the
indexed face set. In GeoElevationGrids, the texture is always mapped exactly unless the
user built a custom set of texture coordinates and placed them directly in the
GeoElevationGrid or GeoTerrainGrid. Thus, if the user does not define a custom texture
coordinate list, then the one that is generated simply does the default behavior for an
indexed face set. In fact, when the code was temporarily commented out, nothing
changed. However, the author cannot verify that no cases where this code is needed
exist. Likewise, to ensure backward compatibility with the GeoElevationGrid, the code
was left in.

The next step is building alist of indices for the indexed face set. All of the
coordinates have now been trandlated into GCC and have had the GeoOrigin applied to
them to maintain precision. What is left is to specify which of these coordinates to use to
build polygons. For example, the first triangle is built using coordinate index 0 which
was the first coordinate built. The second vertex is to the right one column of values and
up onerow of values. Exactly what index valueis associated with this vertex depends
upon how many X values are in the height array. The third vertexis directly above the
first coordinate index and directly to the left of the second coordinate index. The fourth
coordinateis aflag value of -1 which tells the VRML engine that thisisthe end of the

40

first polygon. The VRML engine automatically closes the polygon by connecting back to
thefirst vertex defined, making atriangle. The fifth coordinate index refersto thefirst
vertex of the second triangle for each square defined by the height array. Thisisequal to
the first coordinate vertex of the first triangle. The sixth coordinate vertex isthe
coordinate directly to the right of the fifth coordinate vertex. The seventh coordinate
vertex is directly above the sixth. Finally, the eighth coordinate vertex is another -1 flag
signaling the end of the polygon. Thus, a square defined by four members of the height
field has now been broken into two triangles. Thisisrepeated for every such squarein
the GeoTerrainGrid. Figure 16 shows the order in which the vertices of the grid square
are referenced, remember that two -1 entries are also recorded to signify the end of a
polygonin VRML. The coordinate list and the coordinate index list define the indexed
face set that represents the terrain. Thus, both are passed back to the VRML rendering

engine along with the texture coordinate list.

2 1

0

3 4

Figure 16. Depiction of building coordinate index list

Before leaving the topic of building the indexed face set, the topic of explicitly
defining the rendering of the indexed face set needs to be presented. The original
GeoElevationGrid defined the terrain using grid squares. Since these grid squares are
rarely coplanar, the underlying rendering engine divided the grid square into two

triangles. There are three systems for dividing these grid squares up shown in Figure 17.

41

Figure 17a shows the grid squares before they are divided, which is how the original
GeoElevationGrid defined the terrain. This system cannot be rendered as it stands. The
grid squares must be broken into triangles to guarantee that the polygons are coplanar and
convex. Figure 17b shows the same grid squares divided into triangles by adding aline
segment to each grid square that starts in the lower left corner and ends in the upper right
corner of the grid square. Thisis how the GeoTerrainGrid code builds the terrain
representation. With this breakdown, the final rendering has been explicitly defined and
cannot be altered by the underlying rendering engine. Figure 17¢ shows the same
technique, but divides the grid squares by connecting the upper-left and lower-right
corners. Finaly, Figure 17d shows an arbitrary mix of dividing up the grid squares. This
is how the terrain of a GeoElevationGrid is rendered after the grid squares are broken up
by the rendering engine. This pattern makes it impossible to know exactly how a piece of

terrain is being rendered and can cause artifacts.

2 2 2 2
1 1 1 1
0 1 2 0 1 2 0 1 2 0 1 2
A) Undivided grid B) Grid squares C) Grid squares D) Grid squares
squares divided up and right divided down divided in mixed
and right fashion

Figure 17. Explicitly defining terrain rendering

Figure 18 depicts atypical problem with not defining the terrain rendering
explicitly. The grid square shown has high elevation postings in both its upper-left and
lower-right corners while the lower-left and upper-right posting are low elevation
postings. The problem isdetermining if this pattern of elevation postings represents a
ridgeline (Figure 18b) or a saddle (Figure 18c). With DTED data alone, the correct
rendering cannot be determined, but it can at least be consistent. With the
GeoElevationGrid, the rendering could switch between Figure 18b and Figure 18c
whenever the viewpoint moved. With the GeoTerrainGrid, Figure 18c is always

42

rendered. This allows determining the correct elevation and orientation of the rendered
terrain at any location.

_/

L H L H L rH

A) Grid square undivided B) Rendering a ridgeline C) Rendering a saddle

Figure 18. Explicitly rendering terrain

2. Calculating Elevation at an Arbitrary Point

The first step to calculating the elevation at an arbitrary point isto determine
which GeoTerrainGrid the point falls within. Thistask falls to the GeoManager object.
The getGrid method accomplishes this by simply going through the list of
GeoTerrainGrids and calling the checkBounds method of each one. The
GeoTerrainGrids are not in any specific order other than the order in which they were
created. Therefore, the search issimply alinear search with an average performance of
having to check half of the GeoTerrainGrids before finding the correct one. The worst
case scenario isthat there isno GeoTerrainGrid that covers the coordinate in question
which requires every GeoTerrainGrid to be checked before determining that the
coordinate is not covered. Obviously, this could be improved upon, but the linear search
was adequate for the scope of thisthesis. The checkBounds method of each
GeoTerrainGrid only checks latitude and longitude values. So, when getGrid is passed a
coordinate, it must be in latitude and longitude. To ensure this, the method only accepts a
Gdc_Coord_3d asits argument which is a coordinate in latitude and longitude. Support
for other methods could be added. However, UTM grids, the only other coordinate space
available in GeoVRML, are easily converted to GDC before being passed to the getGrid
method of GeoManager. Thiswill be discussed further under the GeoL ocation3 section.

The second step to calculating the elevation at an arbitrary point isto determine
which polygon within the GeoTerrainGrid the coordinate falls within. Thisis handled by

43

the getElevation method of GeoTerrainGrid. Thisisatwo step process. Thefirst stepis
to determine which grid square of the height array this point fallswithin. Thisis done by
determining the values of partialX and partialZ. These variables are integers that
represent how far to travel through the height array in the X and Z direction to reach the
lower left corner of the grid square that holds this coordinate. The calculation is easy.
The value of the south west corner of the GeoTerrainGrid is subtracted from the
coordinate. The resultisdivided by the spacing value between valuesin the X direction
and values in the Z direction. Only the integer portion is kept. Knowing which grid
square is not enough, though. Each grid has two triangles and the coordinate can only be
located within one of them.

Thus, the third step is determining which triangle within the known grid square
holds the coordinate. The variables fractionX and fractionZ are used to do this. First, the
variables are set to the fractions that were dropped to get the partial X and partialZ values.
These fractions are compared to determine whether the coordinate is in the upper left
triangle or the lower right. However, both triangles use the lower |eft corner of the grid
sgquare astheir first coordinate. So, the first value of the triCoords array isfilled with the
coordinate of the lower left grid point. The elevation islooked up in the height array, but
the other two coordinates are calculated. It does not matter of the coordinate system is
UTM or GDC. In fact, any coordinate system that has elevation as one of its three
components will work with this code. Theif statement determines which triangle to use.
If fractionX is greater than fractionZ, then the coordinate falls in the lower right triangle.
Therefore, the lower right corner of the grid square is the second coordinate while the
upper right coordinate is the third. Otherwise, the upper right corner is the second
coordinate and the upper left corner is the third coordinate. Technically, keeping these
points in counter-clockwise order is not critical for determining an elevation, but it is
always agood practice.

The partial values determine which grid

2 : =
X par:!a:é : 2 square the x is located in. Here, it is the
1 partialy = grid whose lower left corner is (0, 1)
fract!onX) The fraction values reveal that the x is
fractionY =.7

0 1 2 in the upper left corner of the grid square
because the Y value is greater than the X.

Figure 19. Determining which polygon a point lies within

These three coordinates define the plane that holds the coordinate needed. The
normal of this plane is needed to determine the proper elevation of an arbitrary point.
First, get two vectors from the three coordinates. Thisis simple subtraction. The first
vector isthe first coordinate minus the third coordinate. The second vector is the first
coordinate minus the second coordinate. These vectors have an X, Y, and Z component,
of course. The cross product of these two vectors is the normal vector for the plane. This
normal along with one of the coordinates can be used to determine any other point on the
plane. Apply the dot product to the normal and the difference between the known point

and the unknown point. Thisdot product must equal zero. Hereisthe equation:
n-(r—rg) =0

where nisthe normal, r is aknown point, and r is the unknown point. Since the only
unknown is actually the elevation value of the unknown point, there is only one variable
to solvefor. So, asimple calculation retrieves the elevation which is then returned to the
calling method.

3. Calculating Orientation at an Arbitrary Point

Calculating the orientation at an arbitrary point is similar to calculating the
elevation, but GCC coordinates must be used. This sounds strange because GCC
coordinates could not be used to determine the elevation because there was no elevation
valueto solve for. Elevation was embedded within the X, Y, and Z values. Any
coordinate system that has one of its three values as elevation will not work for
determining the proper elevation. The reason is that these systems are two dimensional
systems — even latitude and longitude because it is not 3D until it is converted from
spherical coordinatesto X, Y, and Z valuesin 3D space. Think about having elevations

that are all positive, i.e., dmost any land area of the planet. Higher elevation isalways a
45

greater positive value. But in the southern hemisphere, increasing elevation could
actually cause the X, Y, and Z components of the GCC coordinates to become greater
negative numbers. So, GCC values are needed which means getting the coordinates for
the polygon from the coordinate list of the indexed face set instead of from the height
field.

Determining the grid square that the coordinate is in and the triangle within that
grid square is the same as it was for finding the elevation in the last section. So, it will
not be repeated. However, when retrieving each individual coordinate, the value of the
GeoOrigin must be added to that coordinate. Remember that the GeoOrigin was
subtracted from each GCC point after it was converted from UTM or latitude and
longitude to preserve precision when cast to a single-precision value. This origin must be
added back in to get the actual GCC location instead of the trandated GCC location. Of
course, this means using double-precision variables to hold the GCC location.
Calculating the normal is also the same as it was when determining the elevation. First,
two vectors are found from the three coordinates, and then the normal is found by taking
the cross product of these two vectors. Inthiscaseit iscritical that the coordinates bein
counter-clockwise order and that the vectors be determined from taking the difference of
the first coordinate and the second coordinate and then by taking the difference of the
first coordinate from the third coordinate. If thisformulais not followed, then the normal
could be pointing directly into the terrain instead of directly out of the terrain and the

rotation value will flip the object upside down on the terrain.

The next step isto take the cross product of the normal vector and the vector that
represents ‘up’ for the object. In VRML, ‘up’ is defined to be the positive Y axis. This
thesis assumes that all objects follow this standard convention. However, the code could
be modified later to use a different value or to allow the user to define an ‘up’ vector.
Having the user enter in an ‘up’ value seems to be an unnecessary complication, though,
so the VRML standard of the positive Y axisas‘up’ was used. This cross product gives
avector perpendicular to both the normal of the terrain and the ‘up’ direction of the
object. The object can rotate around this axisto bring its ‘up’ vector to coincide with the
normal vector of the terrain. All that isleft isto determine how far around this vector to

rotate. Of course, this rotation vector will have to be cast to single-precision values
46

which could lose precision. Therefore, the vector is normalized first by dividing each of
its components (X, Y, and Z) by the magnitude of the vector. The normalized rotation

vector should always work fine even after being cast down to single-precision.

Calculating the angle of rotation to go with the vector is not too difficult. The
cosine of thisangleis equal to the dot product of the ‘up’ vector and the normal vector
divided by the magnitudes of the two vectors. Mathematically, the formulalooks like the

following:
n-u = [Inf*{jul] * cosF

where n is the normal vector of theterrain, uisthe‘up’ vector (0, 1, 0) in VRML, and F
isthe angle between the vectors. Solving for Fissimple. See the code for aworking
example.
D. GEOLOCATION3 NODE

Now that the GeoTerrainGrid is capable of determining the proper elevation and
orientation for an arbitrary point, a node to apply these to objectsis needed. That iswhat
the GeoL ocation3 node does. The reason for the 3 at the end of the name is that there
already is a GeoL ocation node and a GeoL ocation2 node in the GeoVRML package.
Therefore, this proposed new node is GeoL ocation3. The node functions identically to
the original GeoL ocation as its default value. However, there are two additional
Booleans called autoElevation and autoSurfaceOrientation that the user can set. When
autoElevation is true, the coordinates of the GeolL ocation will aways be adjusted to the
surface of the terrain at that location. There are three situations that cause the geoCoords
to be set to the terrain. Thefirst isat initiaization if autoElevation istrue. The second is
anytime that the set_geoCoords event is fired and autoElevation istrue. Thus, if aroute
is set up that continually updates the location of a GeolL ocation3, then the elevation will
be set automatically every time. The third situation is anytime that the
set_autoOrientation event is fired and set to true. However, if the event is called again

and the value is set to false, then the original elevation will not be restored.

The autoSurfaceOrientation variable determines whether the objects contained
within the GeoL ocation3 construct are oriented to the terrain or to the local frame.

Orienting the object to the terrain makes the object appear to be resting on the ground.

47

Imagine a car driving up a hill. The car tilts so that the front of the car is higher than the
back of the car. To get this behavior from objects, the autoSurfaceElevation Boolean
must be set to true. Figure 20 demonstrates this behavior. Setting the variable to false
causes the object to be oriented to the local frame only. Thisissimilar to a person

walking up the same hill. The person will still be standing straight up.

I C | Terratnimidlasmagles Thas s NADxnmedes | DTIDSIn g leGrid.wel - Micosoft Tntsmet Explooes N | L R
Fils B3 Wiy Frastes Toos Help o

(Bt = [0 =] 2] 1] G oo Favain W)] i ot L B B
B) (1T v phica| TRk S0 E s i, T CParg ot L. = Do ns "

] Do 5l My Cmpaier

Figure20. A GeolL ocation3 node orienting an object to terrain

The autoElevation and autoSurfaceOrientation variables can both be set to true or
falseindividually to replicate specific behavior. Setting both to true would work well for
cars and vehicles that always stay on the ground and tilt with the terrain. Setting both to
false would ssimulate a helicopter that does not stay on the ground and does not tilt based
on the terrain beneath it. A building setting would have autoElevation set to true and
autoSurfaceOrientation set to false. Thisway, the building sits on the ground, but stands

48

directly up toward the sky. The last combination is autoElevation set to false and
autoSurfaceOrientation set to true. This combination is strange, but someone may come

up with ause for it.

Earlier in thisthesis, VRML’slack of function calls was addressed as alimitation
because an object can only interact with one GeoTerrainGrid at atime viaaroute
statement. If the object crosses to another GeoTerrainGrid, then the scene graph must be
altered. Figure 21 shows that objects using a GeoL ocation3 node do not have this
limitation because the Java class files handle a function calling mechanism within the
Java code automatically. All objects that use a GeoL ocation3 node for placement will
automatically recognize every GeoTerrainGrid currently loaded into the scene and call

upon them for elevation and orientation data when needed.

W | Terratn Gk sragies) Thesls A0 Caampdes’ | DTTDMuRMzk vl - Microssdt Tnbernet [up IHE]E A O e
Fis Bt Wiw Forasies Tools Help &

Bk = (= o] & (5 Search o7 Frvorbes gfYbadin & e 5 BERG 3

Babeire [(1 Tt s phied| TRk STAE s, D TEDIPC l met| = Do nks "

At fone Sl Ay Campar

Figure21. A GeoLocation3 node spanning multiple GeoTerrainGrids

E. SUMMARY
This chapter described the three Java class files that demonstrate the technology

developed in thisthesis. The GeoManager was looked at first because it alows multiple
49

pieces of terrain to register at acommon location so that the GeoManager can help
objects needing terrain data reach the correct GeoTerrainGrid. Second was the
GeoTerrainGrid. Thisisthe workhorse program. The GeoTerrainGrid builds the 3D
models of terrain, calculates elevation at arbitrary positions, and calculates rotation
vectors for objectsto orient them to the terrain. Finally, GeolL ocation3 was discussed.
Thisfileis basicaly the interface for objects to place themselves on GeoTerrainGrids.
The VRML node allows the user to specify which functions of GeoTerrainGrids the

object should use.

50

V. EXPLORING FUTURE POSSIBILITIES

A. INTRODUCTION

The code in this thesis represents a starting point for a thorough terrain package
for simulation or for terrain visualization and analysis. Further research or future areas of
work include several topics. First, reducing the number of polygons used to render the
terrain would improve the frame rate of the display and allow rendering larger areas of
terrain. Second, line of sight algorithms are looked at because they are critical to
determining if objects placed on terrain can see each other. This datais paramount to
military simulation since units must be able to see each other to engage each other with
direct fire. The next section introduces several possible extensions to this thesis that add
useful terrain-related functionality. Then, the idea of terrain serversisintroduced so that
arobust server holding large amounts of data can provide many clients with the specific
pieces of terrain they need. Thisleads to the next topic, deformable terrain, where events
inasimulation change aspects of the terrain. These changes then propagate to the other
clients. Finally, adding terrain related features such as bodies of water, roads, vegetation,
and buildings is discussed.
B. REDUCING THE NUMBER OF POLYGONSDISPLAYED

Rendering higher resolution terrain such as DTED level 2 terrain requires
tremendous numbers of polygons. For example, the sample DTED level 2 code examples
in thisthesis form grids that are 60 squares across and 60 squares deep. Thus, there are
3,600 squares each of which is broken into two triangles for atotal of 7,200 polygons for
an areathat isroughly 1.8 km by 1.8 km. The multiple grid example uses 16 of these
terrain grids for 115,200 polygons for an area that is 4 minutes wide and 4 minutes deep
in latitude and longitude. This equatesto an areathat isalittle over 7 km by 7 km. This
areaisfar too small for amilitary simulation larger than a battle between two companies.
If amilitary theater of operations was 630 km by 630 km, then it would require 350
terrain grids by 350 terrain grids using the same size terrain grids that are in this thesis.
That means 122,500 terrain grids yielding 882 million polygons. That istoo many
polygons for computerstoday. A good exampleisthe Radeon™ series video cards from
ATI. According to the ATl website at www.ati.com, the Radeon™ 9800 Pro can render

51

approximately 380 million triangles per second. Thus, the card would need about 2.3
seconds to render one frame. The Radeon™ 9600 Pro is a much more affordable card
and can only render 162.5 million polygons per second. This card would need about 5.4
seconds to render one frame. Granted, these cards have culling algorithms that eliminate
some of these polygons which would improve the rendering time. However, if the scene
is built with fewer polygons, then the video card will have less work and the frame rate
will improve. Likewise, pushing 882 million polygons to the video card takes a
significant amount of 1/O time even with the newest Advanced Graphics Port (AGP)
buses. Of course, fewer polygons generally resultsin alower quality image. Thekey is
balancing image quality and frame rate performance.

Level of detail isan area of continuing research in computer science. Asaresult,
there are several methods of polygon reduction available. The methods fall into two
broad categories: continuous level of detail (CLOD) algorithms and static level of detail
algorithms. CLOD algorithms currently show the most promise for large scale terrain
because the algorithms use one height array and ssimply vary the number of polygons
built from that height array. Static level of detail algorithms require building multiple
static models of the terrain before rendering and then swapping out the models when
appropriate. This swapping requires alot of 1/0 from the computer which can cause
pauses in the display and requires more storage space in memory or on disk. Therefore,
using static level of detail istypically reserved for rendering complex objects like a

vehicle or person. Terrainis simple enough that CLOD algorithms can work well.

The basic concept of the CLOD algorithms is to render the same piece of terrain
with fewer polygons while minimizing the impact on the final rendered image. Terrain
that is close to the viewpoint needs to use many smaller polygons to show the detail of
the terrain. However, distant terrain can use fewer large polygons without impacting the
final image significantly. The human eye cannot see as much detail in distant objects as
it canin close ones. Therefore, the larger, less detailed polygons used to render distant
terrain look natural to the eye. Figure 22 shows a small height array drawn at three
different levels of detail in a CLOD fashion. The highest resolution (Figure 22a) uses 32
polygons while the lowest (Figure 22¢) uses only 2 polygons. If thisheight array was far

52

enough away from the viewpoint that it only covered afew pixels of screen space, then
the two images would ook the same even though Figure 22c uses muchless detail.

° [[[° . 3

* * [} ° 3 *

° ® 3 ° ° ° 3

A) Full Resolution: 4 x 4 B) Half Resolution: 2 x 2 C) Low Resolution: 1x 1

Figure22. Indexed face set drawn at 3 Resolutions

The screen shot in Figure 23 shows how the GeoTerrainGrids could benefit from
some form of polygon reduction by showing a group of GeoTerrainGridsin wire-frame
mode. Notice that the near terrain is clearly built from triangles while the distant terrain
seems solid. The distant terrain is actually made from triangles that are the same size as
the near terrain. However, since the triangles are far away, they project onto asmaller
area of the screen and look solid.

53

| Trrraintidla srsgies Thesi I DExnmoses | FTTTMulHrid vl - Miorossdt Tnbernst Caplorss B | R] _]
Fis Bt Wiw Forasies Tools Help r
(Gt = (Jr o] & 5 Search o7 Feorbe @bedie) Cieon 0 @A 3

1] 2 Tl e o | TRk 0E TECPCr il | = Do nks "

gl sy mrpany

Figure23. Wire-frame terrain showing how distant terrain polygons do not
require polygons as large as near terrain

GeoTerrainGrids are designed so that LOD can easily be added. All of the code
for rendering the terrain is contained in the GeoTerrainGrid Java file where it can be
studied and modified. A LOD algorithm can be added to explore the effects on image
quality and framerate. In fact, several LOD algorithms can be added to the code and
used interchangeably so that they can be compared using the same rendering engine and
terrain data. Another benefit of the GeoTerrainGrid approach is that each grid is an
independent object that rendersitself. This meansthat every GeoTerrainGrid in the scene
can choose its own level of detail for rendering. Distant grids can use low resolution
while close up grids can use high resolution. As the viewpoint moves, individual
GeoTerrainGrids can change their level of detail independently of the rest. This means
that the scene can adjust the LOD of individual sections of the scene as opposed to
having to re-compute the whole scene when the viewpoint moves. Programming a

54

solution for thiswill require that the GeoTerrainGrids receive the position of the
viewpoint. The GeoManager can be expanded to provide this information.

Of course, aLOD agorithm is needed to determine how to build the indexed face
set that represents the terrain. A simple distance formulawould be a good starting point.
The distance from the viewpoint to the GeoTerrainGrid can determine how many
polygonsto build. This solution can lead to rendering artifacts such as popping as
GeoTerrainGrids change LOD and cracking as adjacent GeoTerrainGrids are rendered at
different LOD. A more sophisticated solution can calcul ate the distances that popping
will occur at and increase the LOD before reaching that distance. One popular algorithm
that addresses thisissue is the Real-time Optimally Adapting Meshes (ROAM) algorithm.
Basicaly, this algorithm builds the scene as atriangle bintree. The scene will start as one
big right isosceles triangle that is repeatedly partitioned to increase the LOD. The scene
can also have triangles merged back together to reduce the LOD as required by the
current scene. The agorithm maintains two queues that hold the triangles which can be
split and merged respectively. The triangles in these queues are sorted by priority based
on what effect the split or merge will have on the scene. Asthe viewpoint moves,
triangles have their priorities updated and are split or merged based on those priorities.
When cracks are formed by a split or amerge, the neighbors of the triangle that was just
split or merged are visited and likewise split or merged to eliminate the crack. The
original algorithm worked well with flight ssmulators where the viewpoint moved along a
path causing the next frame to be similar to the current frame. Therefore, the datain the
gueues listing the priority of the triangles for splitting and merging was still accurate and
only needed some updating. If the viewpoint were suddenly jumped to a new location in
the scene, then the ROAM algorithm would have to re-evaluate al the triangles in both
gueues. Details about an implementation of the ROAM algorithm are available at
http://www.lInl.gov/graphicsROAM/. The ROAM agorithm has since been improved

upon. The Statel ess One-pass Adaptive Refinement (SOAR) agorithm isagood

example. The SOAR algorithm uses the same bintree approach as ROAM, but uses

optimized algorithms to quickly rebuild the entire scene using triangle strips for every

frame. The triangle strips reduce the amount of data passed to the graphics card through

the 1/0 bus and provide the datain afairly optimized data format (triangle strips). SOAR
55

was developed at Lawrence Livermore National Laboratory with details available at
http://www.gvu.gatech.edu/peopl e/peter.lindstrom/software/soar/.
C. LINE OF SIGHT (LOS) ALGORITHMS

A line of sight calculation determines what can and cannot be seen from a given

position due to terrain obstructing the view. For example, if a person is standing at the
bottom of atall hill and facing the hill, then he cannot see what is on the other side of the
hill because the ground isin theway. If this same person moves to the top of the hill,
then he will be able to see dl sides of the hill at once. Determining what a person or
vehicle can see from their current position is paramount to military simulations and
military planning. Therefore, if the project explored in thisthesisisto move forward asa
possible military simulation and planning tool, then adding support for line of sight
calculationsiscritical.

1. Terrain Based L OS Calculations

A line of sight calculation determines if terrain blocks the straight line view
between an observer and atarget. For simplicity, the observer and the target are typically
defined as pointsin the 3D. This means that when checking for line of sight on an object
such as atank, the tank would be considered to be a point rather than avehicle that
occupiesa 3D area. Thisisasimplification, but if the point is placed at the center top of
the tank, then it does reasonably well. A more accurate method could determine a box
around the tank and look for visibility with any corner, but that requires 8 line of sight
calculations and would not add much realism. To be completely accurate, line of sight
calculations would have to cover the entire area the tank occupies. Such a calculation
would require Calculus and be computationally intensive. The single point calculation is
probably the best compromise of performance and realism.

The line of sight between the observer and the target must then be checked against
the terrain. The simplest case happens when both the observer and the target are on the
same polygon of terrain. Here, they always have line of sight on each other. However, if
they are on different polygons, then multiple checks must be made. First, determine the
slope of the target observer line. Then, determine the slope of the line from the observer
to several points of terrain on the observer target line. If the slope from the observer to
any terrain point on the observer target line is greater than the slope of the entire target

56

observer line, then thereisno line of sight. Basically, if thereis high ground between the
observer and the target that blocks the view, then the slope of the line to that high ground
will be steeper than the slope of the line to the target (Figure 24).

The line of sight (dashed) is The line of sight (dashed) is
at the greatest angle from the at less of an angle than two
horizon. Line of sight exists. other lines. Line of sight

does not exist.

Figure24. Graphical depiction of determining terrain based line of sight

The next question is how many and what points of terrain to check. A complete
solution will check the terrain at the intersection point with every side of every polygon
crossed asin Figure 25a. Thiswould require either two or three calculations for every
grid square spanned, one when entering the grid square, one when leaving, and possibly
one if the line intersects the line that divides the grid square into two triangle polygons.
Of course, exiting one grid and entering the next is the same calculation. Therefore, the
actual total number of calculations when spanning n grid squares is between n+1 and
(2*n) + 1. When objects are many grid squares apart, these calculations will grow
quickly. The MODSAF military ssimulation checks line of sight using this method.
Another approach is to always use the same number of calculations and just distribute
them evenly across the distance between the observer and target (Figure 25b). This
technique could determine that aline of sight exists when it actually does not, but it does
keep the number of calculations to a much more manageable number. The Janus military
simulation uses this technique. Y et one more technique is to keep the average elevation
for every grid square and use that elevation for line of sight calculations. Thiswould
mean only one calculation for every grid square spanned. Thus, thisis a compromise

between the first two methods. Of course, more systems could be devised.

57

A) Every Possible Intersection B) Only Three Points On
Checked Line of Sight Checked

Figure 25. Determining the number of line of sight calculations

2. Horizon Based Line of Sight Calculations

Thisthesis has been talking about potentially large areas of terrain in true 3D.
Thus, the curvature of the earth is a consideration in line of sight calculations. Take, for
instance, aline of sight calculation between two ships on the surface of the ocean. Since
sealevd will have an elevation of zero, these ships would always be able to see each
other by the terrain oriented line of sight calculations just described. However, the ships
could be far enough apart that the horizon blocks the line of sight. The formulafor the
location of the horizon is not too difficult, the Pythagorean Theorem is used (Figure 26).
Imagine aline from the observer to the horizon and call it ry, for the range to the horizon.
Thisisthefirst leg of aright triangle. Next, imagine aline going from this point of the
horizon to the center of the earth, call it R for radius of the earth. Thisradiusis
perpendicular to theliner,. Build aright triangle with these two linesasitslegs. The
length of the hypotenuse of this triangle is equal to the radius of the earth plus the height

of the observer above sealevel. The equation looks like this:
R+ 1’ = (Re + hy)?

Where h, is the height of the observer above sealevel. Solving for ry, gives:
M’ = Re’ + 2Rehy + h® —Re”
h = SArt(2Reh, + hy?)

The radius of the earth (6,374,000 m) is great enough that the h,? term can be
insignificant and ignored at low elevations. Any terrain farther away than r, is beyond
the horizon and will not be visibleif it is at the surface of the ocean. However, if another

object is higher than sealevel, then it can still be visible. Thisrange can be calcul ated.
58

In fact, if the range from this object to its horizon is calculated in the same fashion as just
done above, then the range that the two objects will be able to see each other over the

horizon is the sum of their individua r,, values.

V X
P hD
(hO s Re)z = th & Rez

Figure26. Calculating distance to the horizon

Of course, ground forces will rarely need to worry about forces beyond the
horizon. Ground forces will require the terrain oriented line of sight calculations.
However, the over the horizon calculations are useful for ships at sea. Likewise, the over
the horizon calculation could be used to locate terrain grids that do not have to be
rendered at all.

The code for terrain based LOS calculations will be split into two areas.
GeoTerrainGrids will determine terrain based LOS within their individual boundaries.
Determining which GeoTerrainGrids to use and the points where the LOS enters and/or
exitsindividual GeoTerrainGrids will be done by the GeoManager. Thus, the user will
call amethod in the GeoManager to determine LOS. The GeoManager will in turn call
methods in as many GeoTerrainGrids as necessary.

D. MISCELLANEOUSTERRAIN FUNCTIONS

The last section described L OS functions that could be added to the code in this
thesis. Scene graph nodes would access these functions by interacting with the
GeoManager class. This same pattern can be used to add even more functions to the
code. Three examples are determining the slope of the terrain at a given location,
determining the distance between two geographic positions, and determining the straight
line path between two positions. Each of theseis briefly discussed here.

59

The dope of theterrain at a given position can affect the speed of a vehicle
moving on that terrain. Many vehicles have difficulty climbing steep slopes and slow
down when doing so. Likewise, many vehiclestravel faster when moving downhill.
Finally, some slopes are too steep for vehiclesto climb at all. Determining the slopeis
not too difficult given the position and the direction of travel of the object. Two
elevation values are needed. The first must be from the location of the object while the
second must be from small distance away in the direction of travel. Determining these
elevations was covered in section 3.C.2 of thisthesis. The difference between the two
elevation valuesis called the rise of the terrain while the distance between the two
locationsis called the run. The percentage of the slope is the rise divided by the run
multiplied by 100. Figure 27 shows an example calculation using ariseinterrain of 1.5

meters and a run of 4 meters.

Percent Slope:
Rise of Terrain x100
Rise of Run of Terrain
Terrain
(1.5 meters) 1.5 meters x 100
4 meters

Slope = 37.5%

Run of Terrain (4 meters)

Figure27. Calculating percent slope

Determining the distance between two geographic positions can be a difficult
problemin UTM and latitude and longitude but is much more manageable in geocentric
coordinates. Latitude and longitude coordinates do not easily convert to distances
because the distance between lines of longitude varies with latitude. UTM coordinates
are based on evenly spaced reference lines, but there are till problems at certain
locations of the earth. Figure 28 shows a section of the UTM system that demonstrates
the problem. The figure is broken down into grid squares that have 2-letter designators.
Each grid square is 1 km by 1 km by definition. However, the UTM system divides the
world into slices that are 6 degrees of longitude wide. Since the lines of longitude
converge at the poles, these 6 degree slices become narrower as they approach the poles.
To account for this convergence, grid squares at the boundaries shrink and eventually

60

disappear while traveling toward the poles. Thisisvisible in the two columns that start
with the letters Y and B. At the bottom of Figure 28 these two columns are wider than
they are at the top of the figure. If the diagram showed alarge enough area, then the two
columns would eventually disappear as the poles were approached. These boundaries

make distance calculations difficult.

PLATE 12

s6° 680,000m - 500, 000m Bar

fﬂ"f Ta ua Vo Wi xo va | &v o [BV Y gv | %0

ujTP| upP VP WP | XP |YP]BU| CU DU EU FU |GuUl kP

11 AFan ciz i "l

f
|iIE.'|T TN| UN VN WN XN |ynlBT| CT 11} ET FT |GT] KN
4

Qs|T™ | UM | VM lwm |oXM-|ym] BS | CS:| DS ES K
arfTL| vt vi | wil x| v|er OR | ER =

aaf Tk | uk | vk | wx x| vk | Ba u_‘;:ﬁ_::'_ pa E'Ei FQ jlcie] I

QP TS| us | v wo X fyaler| cp | DR JuEP | TFRilGP| K

ONJ TH | UH viH | wa | XH | vyl BN | CN DN | EN FN |GN] K

am| 76 | uc | vé [we | XG [vc|Bm| cm | DM | EM | FM IGMIK

a1 | ur | v | wr| x| ve]BL | oo | oL | EL JELJGLYK

Figure28. UTM system showing converging grid squares [FM 3-25-26 Figure 4-11]

Any distance calculation that does not cross one of these 6 degree boundariesis
straightforward. The geographic coordinates of the two locations trandate directly into
the north-south distance between the points and the east-west distance between the
points. However, if a6 degree boundary is crossed, then cal culating the distance from
the edge of the boundary terrain grid to the boundary itself is difficult. Latitude and
longitude coordinates coud be helpful here. If the intersection of the 6 degree slice can
be computed in latitude and longitude coordinates, then that coordinate can be converted

61

intoaUTM coordinate that may allow the user to determine the distance spanned by that
truncated grid square.

The problem is probably best approached using geocentric coordinates.
Converting both coordinate locations to GCC givestwo setsof X, Y, and Z values that
represent a vector from the center of the earth to the coordinate point on the surface. The
angle between the two vectors represented by the GCC locations of the two coordinatesis

needed. The following formula determines this angle.
a-b=a||b| cos?
?=acos((fal o) / (a - b))

Where a and b are the vectors determined by the GCC val ues of the two
coordinates and - represents the dot product. Of course, this only works when a - b does
not equal zero which only happens when a and b are orthogonal. In this case, ?isequal
to .5p. The distance between the coordinates is then an arc-length problem and the arc-
length is simply the radius of the earth multiplied by 2.

The straight-line-path between two locations is a path that, when followed, moves
across the terrain while always remaining at the exact elevation of the terrain. A simple
straight line between two points will often rise above the terrain or dip below the terrain
depending on the specific contours of the terrain between the two points. Building a path
that explicitly follows the terrain requires knowing exactly how the terrain was built.
With the original GeoElevationGrid determining an explicit path was not possible
because the rendering was not explicit (see section 3.C.1 of thisthesis). However, with
the GeoTerrainGrid, an explicit path can be determined. Implementing an agorithm to
determine this path requires determining al the points of intersection with the straight-
line path and the triangles in the indexed face set. Figure 29 shows al of these
intersections on an example path. The algorithm could store the path in an indexed point
set with the points listed in order from the start point to the end point.

62

Every point of intersection together
determines a path over terrain

Figure29. Determining the path over terrain

E. TERRAIN SERVERS

In the second chapter of thisthesis, the large amount of data represented by
DTED was briefly discussed. Basicaly, the amount of datais tremendous when higher
levelsof DTED are used. Therefore, placing the data on every computer that is running
as part of amilitary simulation or training aid is not feasible. However, having a server
with robust amounts of storage space that supplies terrain data to clients when needed is
feasible. Military simulations are typically run in simulation laboratories with soldiers
manning individual workstations that drive smulated forces in the computer. The
opposition forces are driven either by more soldiers specifically selected for that task or
by civilians. All of the computers participating in the simulation are placed in the same
laboratory and are connected to aLAN or WAN. Thus, the simulation is a distributed
computer exercise where each computer controls specific icons and listens to the network

to keep track of what the other icons on other computers are doing.

The individual computers that soldiers and civilians drive icons from do not have
hard drives large enough to store hundreds of gigabytes of terrain data needed to render
the entireworld at DTED level 2 or higher. One solution to this problem would be to
upgrade al of the computers, but that would be far too expensive. A more cost effective
solution would be to build networked terrain into the ssmulations. Thisway, each
computer would only have to store the terrain that the iconsit controls are currently
occupying. When the icons move to a new area, the software can swap out the old terrain
data and replace it with data of their new location. However, this requires a server to

handle terrain and networking.

63

One of the primary concerns with using networked terrain will be bandwidth.
Largeterrain files require lots of bandwidth to transfer from computer to computer. So,
minimizing the amount of data sent iscritical. Some possible solutions are multicasting
terrain data so that multiple computers will receive data with every transmission and
sending terrain datain as compact aformat as possible. The multicasting solution
requires that multiple computers in the simulation require the same pieces of terrain.
This may sound unlikely, but would actually be fairly common. Picture a combat brigade
moving toward an objective. There are severd types of vehicles being controlled by
possibly dozens of individual work stations and all moving toward the same objective.
There will be asignificant amount of overlap in the terrain needs of those computers.
However, a multicasting protocol would be needed that recognizes repeated requests for

the same terrain and does not automatically respond to each one.

There is another significant issue with the terrain server concept, though. That
issue is providing terrain to several different smulation programs that are all participating
in the same distributed simulation (often referred to as a Federation in current military
simulations). Each branch of the military hasits own simulation programs that have
differences. In order to participate in large simulations spanning all the branches, these
different programs conform to standards for describing what their icons are doing within
the simulation. The current standard is called the High Level Architecture or HLA.
Details about HLA are at https:.//www.dmso.mil/public/transition/hla/. The actual

specification is the |IEEE 1516 specification and is available for purchase at
http://shop.iece.org/store/product.asp?prodno=SS94883. A standard similar to HLA will

be needed for networked terrain. One possibility isto send DTED files over the network.
However, DTED files are in a binary format that can be difficult to read and can be
inflexible in the amounts of data transferred. Another solution isusing XML to transfer
data. XML was described in Chapter 11 of thisthesis and provides a more elegant
solution where the user could use XML tools to draw the data out of the files without
having to meticulously parse a binary file format. Likewise, using XML allows
validating terrain data files to ensure that every program on the system is producing
proper terrain files. The XML version of aDTED file would be significantly larger than
the original file, increasing the bandwidth needed. However, XML files are text based
64

and work well with common compression algorithms. Using such algorithms can bring
the size of the files back down to save some of this bandwidth. Ekrem Serin of the Naval
Postgraduate School did athesis that addresses serializing binary objects created from
XML [Serin, 2003]. Histhesisislocated at theses.nps.navy.mil/03Mar_Serin.pdf and

presents ideas that can be used to create a robust networked terrain solution that uses
open standards.
F. DEFORMABLE TERRAIN

Having deformable terrain means that actions within a simulation can change the
shape of the terrain with persistent effects. For terrain discussed so far in thisthesis, this
would result in changing the height values of the underlying DTED data. These changes
would then be propagated to all other clients when the particular area of terrain is used.
How the terrain is modified could vary from digging atank ditch, to filling in a culvert, to
blowing large holes in the earth with bunker busting thousand pound bombs. The code to
determine how these occurrences affect terrain is not a subject for thisthesis. What is
relevant here are techniques to propagate those changes throughout a distributed military

simulation.

One possible technique is to store complete terrain files on every computer in the
simulation. When one computer determines that a terrain atering event has occurred, the
changein terrain is calculated and sent out to every computer in the distributed system.
Sending the entire terrain file every time a small change occurs would be terribly
inefficient. Therefore, a protocol for sending small changes would be used. If this
protocol was areliable protocol, then the terrain change would only be sent as many
times as necessary for al the systems in the simulation to acknowledge receipt. Each
system would then store the change on local storage in case the system required rebooting
at sometime. The problem with this solution is that if a system goes off-line, then that
system will not acknowledge receipt of the terrain change and will cause repeated re-
transmissions until the system comes back ontline and acknowledges receipt. An
unreliable multicasting protocol could be used instead. However, with this situation, the
changein terrain would have to be retransmitted at regular intervals for the duration of
the simulation because there is no mechanism to verify that everyone has received and
understood the message. This periodic retransmission is called a heartbeat and insures

65

that eventually, every computer listening to the system will get the message. This
technique will not scale well at all, though. Deformed pieces of terrain would use up
bandwidth retransmitting the deformation until the exercise ended. This technique will

not work in large simulations.

A second approach involves the terrain server. This system needs a separate
networking solution for passing terrain to clients because some form of reliability is
required. In other words, the terrain server cannot use the heartbeat method for passing
terrain data. Thereistoo much datafor that and it rarely changes. Deformableterrain
would require reliable networking in both directions. This does not mean that TCP/IP
must be used like it is with most reliable networking solutions. In fact, TCP/IPisnot a
multicasting protocol. Therefore, some other reliable protocol that supports multicasting
would be desirable. Unfortunately, there are no common or proven networking protocols
that support reliable multicasting. One possible future solution is the Selectively Reliable
Multicast Protocol (SRMP) being developed at George Mason University by Mark Pullen
[Shanmugan, 2002]. Details about the system are at netlab.gmu.edu/SRM P/contact.php.

However, some investigating and testing will be required. Terrain atering events would
be sent to the terrain server(s). From there, clients could be notified that a change has
occurred in aspecific area. If asystem joins late or hasto restart, then it will
automatically contact the server for its terrain data and will receive the new deformed
terrain. The toughest question is how to inform al of the clients of the change. Some
clients will need to update their terrain data while others will not be interested in that
terrain at that time. So, the question is whether the server somehow keeps track of which
clients are currently using the terrain that was just deformed or whether the server bothers
every client including those that do not have that terrain loaded at the time. Personally,
the author thinks sending an update notification to every client is the better solution
because terrain changes are rare enough that forcing the server to keep track of what
terrain each client currently has loaded is not justified. Infact, it is possible that the two
way communication that keeping track of every client’s terrain use would require could
be more burdensome on both the server and the client than just demanding a negative or
positive response to aterrain change from every client.

66

G. GEOGRAPHIC FEATURES SUCH ASBODIES OF WATER, ROADS,
VEGETATION, AND BUILDINGS

One last topic of discussion is how to include terrain features that are not present
inaheight field. For instance, roads are not present in DTED. However, roads are very
significant in military simulations. The question is how can aroad be represented within
the simulation so that it can be utilized as aroad by objectsin the smulation, rendered as
aroad, and possibly deformed by events? The problem isthat an item such asaroad is
neither an object like the icons that represent vehicles and personnel, nor isit ordinary
terrain. For instance, roads cannot be rendered with the terrain engine in this thesis
because they do not conform to evenly spaced postingsin a height field. Additional code
specifically aimed at rendering a road would have to be written. Li kewise, the path of the
road along with the dimensions and type would have to be available to determine how to
render the road. After all, agravel road looks significantly different than an interstate

highway.

Geographic features such as roads, bodies of water, and buildings will have to be
stored as objects. In fact, each type of geographic feature will require its own type of
object, possibly multiple types of objects. Take for instance, the road example again. A
road object would be able to store information about the route the road follows, the width
of the road, what type of texture map to use when rendering the road, how the road
affects trafficability, and more. Likewise, the road object will have code to draw the road
in the rendering engine. Complicated simulations could even have code that degraded the
road every time avehicle passed over it. Naturaly, the road will have to interact with the
terrain objects for the display to work properly. The road will need to access height field
datain order for the road to sit properly on the surface of the terrain at al locations.
Simply retrieving the proper terrain elevation at a point will not work because the road
will span many polygons of terrain. Instead, the road will have to know how the terrain
polygons are being built so that it can match those polygons. If the road ssimply takes
some spot elevation, then there will be places where the road floats above the terrain a

little and places whereit is buried alittle.

The next question is how to control and distribute these objects throughout the
system. Normally, objects are controlled by clients who routinely update the system with
67

the status of the objects using heartbeat packets. However, if every road, building, body
of water, and tree suddenly needed to give off heartbeat packets, then the network would
become saturated. Theterrain related objects could have their heartbeat packets sent
much less frequently and at spaced intervals, but they would still be consuming
bandwidth and client processor cycles for handling the packets. Another solutionisto
treat the objects just like terrain. The terrain server sends the objects along with the
terrain. Thiswould likewise help the clients to associate the terrain objects with the
appropriate terrain grids so that when aterrain grid is rendered at alower resolution
because it is far away from the viewpoint, the terrain objects can match that lower
resolution. The terrain objects could even be given direct access to the height field and

indexed face sets to assist in the rendering process.

Another benefit of treating the geographic features similarly to terrain is that the
terrain server owns the objects. Everything in the simulation is owned by some computer
in the smulation. If that computer goes offline, then those objects disappear from the
simulation until that computer comes back ortline. If the geographic objects gave off
heartbeats, then they would disappear from the system anytime their computer goes off-
line long enough. The terrain itself, though, would not disappear even if the terrain
server went off-line. Thisis because the terrain is persistent until the client istold thereis
achange. Of course, none of the clients will be able to retrieve any additional pieces of
terrain nor will they be able to report any terrain deformations while the server is off-line,

but the simulation would be able to continue.

Here are some final thoughts on many of these types of objects. The objects will
need the necessary code to render themselves. This code would ideally allow the objects
to render at multiple levels of detail that mirrorsthe level of detail that the terrain around
them isrendering itself at. The objects will aso need code to handle how simulation
objects interact with them. For instance, vehicles will typically move faster on roads and
will sink in water. Thiswill require the ability to communicate with the ssmulation
objects. Each object will also need code to determine how it is deformed by various
actions. A tank round will not know how to deform aroad versus a building versus a
body of water. Instead, the geographic objects will have to contain this information.

Granted, the objects will have broad categories such as explosive projectile or kinetic
68

energy round, but the code for calculating damage will have to be in the geographic
objects. The munitions object will only contain data describing the weapon. These
geographic objects will also need to be robust enough to understand how deformations
affect how the object rendersitself and how it interacts with simulation objects. Some of
the simpler geographic objects will be roads and bodies of water. After all, they could
simply be viewed as improvements to mobility and restrictions to mobility. Vegetationis
tougher because it also affects visibility. Line of sight algorithms would have to take
vegetation into consideration. Thicker vegetation would limit the line of sight and lower
the probability of detecting simulation objects within it. Buildings would be very
difficult. Here, simulation objects could enter the building and interact with it. Objects
within the building would not be visible from the outside unless they are near a window,
door, or hole. Buildings can be damaged so that the appearance changes significantly.
The change may be a scorch mark, a small hole, or maybe even a collapsed wall. The
line of sight algorithms for terrain will not work because the buildings have walls that
have windows and doors. Even if damaging buildingsis not allowed, ssmply determining

an efficient way to define the structure and appearance of a building is complicated.

Lastly, one of the most difficult problems will be getting the majority of the
simulation programs being used to agree upon how to implement these geographic
objects. The various simulation programs will already be handling terrain in asimilar
manner, but these objects will be very different. Air Force and Navy simulations will
probably treat objects such as roads ssmply as visual objects for display. However, Army
and Marine simulations will treat roads as both visual objects for display and terrain
objects that impact mobility. Air Force simulations will have situations where planes are
at high altitude and capable of viewing hundreds or even thousands of buildings at one
time. If each of these buildingsis alarge and complicated object, then the Air Force
simulation will not be able to load the scene efficiently without sophisticated culling and
level of detail algorithms. However, the Army and Marines will need the buildings to be
robust objects that the icons of soldiers can enter and interact with. Meeting both of these
needs simultaneously so that the Air Force, Army, and Marines can run ajoint smulation
will be adifficult task.

H. SUMMARY
69

This chapter focused on five possible extensions to the technology developed in
thisthesis. Thefirst topic, polygon reduction, would improve the frame rate of terrain
displays and increase the maximum amount of terrain that could be viewed at one time.
The second topic was line of sight algorithms. Two algorithms were discussed, one for
local terrain and a second for over-the-horizon calculations. These agorithms are used
extensively by military ssmulations. The next topic was terrain servers. Most computers
today do not have the space to store terrain data for the entire planet. Therefore, a
networking solution where robust servers hold all the terrain for the world and give
smaller client computers the specific pieces of terrain that they need would allow smaller
computers to have full access to data on the entire planet. The fourth topic, deformable
terrain, would allow simulations to explore events that change the surface of the earth.
Finally, some of the issues that will be encountered when trying to incorporate terrain
related objects into the scene are addressed. These items include things like roads and
vegetation that are not actualy terrain, but that stay geographically fixed.

70

APPENDIX A. ACRONYMNSAND ABBREVIATIONS

AGP

CLOD

DTED

GCC

GDC

GeoVRML

LAN

LOD

LOS

ROAM

SAVAGE

SOAR

SRMP

UTM

VRML

WAN

XML

XSLT

X3D

Advanced Graphics Port

Continuous Level Of Detail

Digital Terrain Elevation Data

Geocentric Coordinate

Geodetic Coordinate

Geographic Virtual Reality Modeling Language
Loca AreaNetwork

Level Of Detail

Line Of Sight

Real-Time Optimally Adapting Mesh

Scenario Authoring and Visualization for Advanced Graphical
Environments

Statel ess One-pass Adaptive Refinement

Selectively Reliable Multicast Protocol

Universal Transverse Mercator

Virtual Reality Modeling Language

Wide Area Network

Extensible Markup Language

Extensible Stylesheet Language for Transformations

Extensible 3D Graphics

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIXB. CODE EXAMPLES

The code for thisthesis started out as several files, but was condensed into only
three. All the codeiswrittenin Java so that it can work with VRML as part of a script
node. Thefirst Javaclassisthe GeoManager. Thisisthe most unique class of the three
because it does not extend the Script class. This meansthat it is not associated with a
X3D or VRML node. The GeoManager is a helper class that allows the Geol ocation3
class and the GeoTerrainGrid class to work together and extend the power of X3D and
GeoVRML
A. GEOMANAGER

The key to this class is the private constructor and the static method to retrieve a
copy of aGeoManager. Together, these aspects ensure that only one GeoManager exists
at any time and that all GeoTerrainGrids and GeoLocation3s can work together by
communicating through this single GeoManager. The code is commented extensively to

assist the reader in understanding the code.

import java.util.*;
i nport geotransform coords. Gdc_Coord_3d;

public class GeoManager
{

/1 One static manager is defined - this is the only
manager that anyone

[l will be allowed to use (CGeoTerrai nGids and
CeoEntities)

private static GeoManager manager = null;

/1l This Vector holds all the terrain grids that register.
Renenber that when

/1 coding in Java, only Java 1.1 nethods can be used.
This significantly

/1 limts the nethods avail able for Vectors.

protected Vector grids;

/1l This vector holds all the entities that register.
protected Vector entities;

73

/1 This hashtabl e holds every URL received and
automatical ly does not

/1 record duplicate entries

prot ect ed Hasht abl e url Keeper;

[/ Turn this to false to shut off debugging statenents to
t he consol e
private bool ean debug = true;

/1 The only way to access the GeoTerrai nManager is to
call this static nethod
public static synchroni zed GeoManager get GeoManager ()
{
/'l Check to see if a manager has already been created
i f (manager == null)
{
/'l None has, so create one
manager = new GeoManager () ;

}

/'l Return the static manager - it may have just been
created
return manager
}

/**

* Constructor; should not be called by external people.
To get

* an instance of this class, call getTerrai nManager

*/

private GeoManager ()

debugQut ("I nsi de constructor for GeoManager. Manager =
+ this);

grids = new Vector()

entities = new Vector();

ur | Keeper = new Hashtabl e();

}

/**

* Add a new grid to the |ist

*/

public void addGid(CGeoTerrai nGid newGid)

gri ds. addEl enent (newGi d) ;
debugQut (" Addi ng new GeoTerrainGid. Total nunber of
grids: " + grids.size());
}

74

public GeoTerrainGid getGid(CGdc_Coord 3d coordi nate)

{
CGeoTerrainGid tenmpTerrainGid = null;

bool ean found = fal se;

for(int x = 0; x < grids.size(); x++)

{
tenpTerrainGid = (GeoTerrai nGid)grids. el ement At (x);
i f(tenpTerrai nGi d. checkBounds(coordi nate))
{
found = true;
br eak;
}
}
i f(found)
{
return tenpTerrai nGid;
}
el se
debugQut ("Did not find a grid");
return null;
}

}

private void debugQut (String nmessage)

i f(debug)
System out . printl n(message) ;

75

B. GEOTERRAINGRID NODE

The GeoTerrainGrid is the workhorse of thisthesis. This code creates the indexed
face set that renders the terrain, calculates the elevation at arbitrary positions, and
determining the rotation vector and angle needed to orient an object to the terrain under
it. Thereislicense agreement attached to this code because it is an extension to the
GeoElevtionGrid from SRI. Therefore, the license agreement from SRI isincluded. All
changes to the original GeoElevationGrid have been clearly marked.

I
[l Filenane: GeoTerrainGid.java (fornerly
CGeoEl evati onGi d. j ava)
I
/1 Aut hor:
/1 Martin Reddy, SRI International
/1 Hei ko Grussbach, Centre Recherche Henri Tudor
/1 Yong-Tze Chi, SRl International
/1 CPT Brian Hittner, US Army, Naval Postgraduate Schoo
st udent
I
/'l Purpose:
/1 This class inplements a new El evati onGid node for
VRML. It enables the
/1 specification of coordinates in coordinate systens
ot her than the
/1 basic VRWL Cartesian XYZ system W support a nunber
of geographic
/1 coordi nate systens such as lat/long and UTM
I
/1 This code requires access to the GeoTransform Java
package, included
/1 as part of the GeoVRML source code distribution
I
/'l License:
/1 The contents of this file are subject to GeoVRWM.
Publ i c License
/1 Version 1.0 (the "License"); you may not use this file
except in
/1 conpliance with the License. You nmay obtain a copy of
t he License at
/1 http://ww. geovrm .org/1.0/1icense/.
I
/1 Software distributed under the License is distributed
on an "AS
11 | S" basis, WTHOUT WARRANTY COF ANY KI ND, either
express or
76

/1 inplied. See the License for the specific | anguage
gover ni ng

/1 rights and Iimtations under the License.

I

/1 Portions are Copyright (c) SRl International, 2000.
I

/'l Revi sion:

/1 Martin Reddy: initial version

/1 Hei ko Grussbach (28 Feb 2000): optim zed conversion to
G&CC

/1 Yong-Tze Chi (20 Jul 2000): get round get1Val ue()
error in Cosno

/1 Brian Httner (26 Sep 2003): Mjor revision

/1 - Added ability to register grid wth a GeoManager
/1 - Added ability to retrieve correct elevation to
pl ace an object on

/1 the ground at a given |ocation

/1 - Added ability to retieve correct rotation to

pl ace an object on

/1 the ground at a given |ocation

/1 - Replaced nmai ntaining the indexed face set,
coordinate list, and hei ght

/1 field at class level with retrieving sane val ues
fromthe VRWL Node

/1 when needed to reduce the nenory footprint

/1

/1 $1d: GeoElevationGid.java,v 1.2 2002/ 03/08 00: 30: 25
reddy Exp $

/1

i nport java.l ang. *;

import vrm . *;

inport vrm . field. *;

i mport vrnl . node. *;

i mport geotransform coords. *;

i nport org.web3d. geovrm . GeoVRM,;

[*x*xxxxkxkxkx Gtart CPT Brian Hittner Addition Sep 2003

R R I b b S b Sk b S b

i mport geotransformtransforns. *;
import java.util.*;
[*x*x*xxxxxkx*kx End CPT Brian Hittner Addition Sep 2003

kkhkkkkhkkkhkkkhkk*k*x

public class GeoTerrainGid extends Script {

GeoVRML geovrm = nul |
77

doubl e yScal e;

doubl e xlnc, zlnc;

i nt xDi mensi on, zDi nensi on;
bool ean debug = fal se;

[Fx*x*xxxkxkxkx Grart CPT Brian Hittner Addition Sep
2003 kkkkkkkhkkkkkkk
/[** The follow ng variables are no | onger kept at the
class level. Instead, the
* values are retrieved at run-tinme fromthe underlying
VRWL object to reduce
* the nmenory footprint of this class.
*/
/'l Node ifs, coord,
[/l NMFFl oat height = null;
/1 A validHei ghtField boolean is used so that the code
does not try to calculate
/1 anything if the height field was initially invalid or
| ater set to something
/1 invalid. It is set to true only once a valid height
field is processed.
bool ean val i dHei ghtField = fal se;
Gcec_Coord_3d gccGeoOrigin; // This is needed to convert
coordi nates that are
/'l in screen coordinates back
to GCC space
/1 The Terrai nManager keeps track of terrain grids by
t heir boundaries. The
/'l boundaries are stored as the south west corner and
the north east corner.
Gdc_Coord_3d gdcSout hWest, gdcNort hEast ;
Ut m Coord_3d ut nSout hWest, utmNort hEast;
/'l The GeoManager all ows CGeoLocation3 to | ocate the
proper terrain grid
GCeoManager nanager;
[*x*x*xxxxxkx%kx End CPT Brian Hittner Addition Sep 2003

kkhkkkkhkkkhkkkhkk*k*x

String geo_system
String geoGidOrigin;

/'l regenerate() wll build the vertex lists based upon
t he current

/'l CeoElevationGid state, e.g. yScal e, height array,
etc.

/'l Note: paraneter height was added by CPT Brian Hittner,
Sep 2003

78

private void regenerate(MFl oat height) {

[Fx*x*xxxkxkxkx Grart CPT Brian Hittner Addition Sep
2003 *khkkkkkkhkkhkkkkk

/'l These VRML Nodes are needed to build the
| ndexedFaceSet that is the

/'l rendered terrain (These used to be class vari abl es)

Node ifs;

Node coord;

/'l Retrieve the Nodes that define the | ndexedFaceSet
coord = (Node) ((SFNode) get Fi el d("coord")). get Val ue();
ifs = (Node) ((SFNode)getFiel d("ifs")).get Val ue();
[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep

2003 R R I b b S b Sk b b b

/'l get the texCoord coordinate list. If vrm _texpoint
i s non-nul

/1 after this, then we need to generate texture
coordi nat es

float h[];

float vrm _texpoint]|
Node t exCoor dNode
MFVec2f tex_point

nul | ;

] =
nul | ;
nul | ;
SFNode texCoord = (SFNode) ifs. get ExposedFi el d(
"texCoord");
if (texCoord !'=null) {
t exCoor dNode = (Node) texCoord. getVal ue();
if (texCoordNode !'= null) {
tex_point = (MrVec2f) texCoordNode. get ExposedFi el d(
"point");
if (tex_point.getSize() == 0)
vrm _texpoint = new float[xDi nension * zD nmension *

}

2 1;
}

/'l let's allocate an array to hold all of the (x,y, z)
coords

float vrml _point[] = new float[xDi mension * zDi nension
*3];

/1l 1oop through all height field val ues

79

int h_index =0, p_index = 0, t_index = 0;

/[llnsertion starts Hei ko Grussbach
doubl e[] geoG i dOri gi nArray=new doubl e[3];
doubl e[] new_coor d=new doubl e[3];

geoG i dOri gi nArray=geovrm . get Val ues(geoGi dOrigin, 3);
float xDiv=1.0f/(xD nension - 1.0f);

float zDiv=1.0f/(zD nension - 1.0f);

/1l nsertion ends Hei ko Grussbach

h = new float[zD nension * xDi nmension];
hei ght . get Val ue(h) ;

for (int z

= 0; z < zDinmension; z++) {
for (int x =

0; x < xDi nension; x++) {

/1l get this elevation value (inplenment vertical
exaggerati on here)

// doubl e el ev
) * yScal e;
doubl e el ev

(doubl e) hei ght. get1Val ue(h_i ndex++

(doubl) h[h_i ndex++] * yScal e;

/1 work out the string describing this new geographic
| ocation

/| Change starts Hei ko Grussbach
geovrnl . addCoord(new coord, geoGidOigi nArray,
xl nc*x, zlnc*z,
el ev, geo_system);
/ | Change ends Hei ko G ussbach

if (newcoord == null) return;
/1l convert this into GCC

Gcc_Coord_3d gcc = geovrml . get Coord(new _coord,
geo_system);

// and then add it to our list of floats

vim _point[p_index++] = (float) (gcc.x); [/ |/
1000000. 0);

vrm _poi nt[p_i ndex++]
1000000. 0);

(float) (gcec.y); /1 [/

80

vim _point[p_index++] = (float) (gcc.z); I/ |/
1000000.0);

/1 and update our texture coordinate |ist too

if (vrml _texpoint !'= null) {
/| Change starts, Hei ko Grussbach
vim _texpoint[t_index++] = (float) x *xD v;
vim _texpoint[t_index++] = (float) z *zD v;
/| Change ends, Hei ko Grussbach

}
if (debug)
Systemout.println(h_index + ": " +
viml _point[p_index-3] + ", " +
vim _point[p_index-2] + ", " +
viml _point[p_index-1] + " @ " +
new coord);
}
}
h = null;

// Now let's nake the coords field of our Coordinate

node
/1l equal to the list of coordinates that we have j ust

bui |l t

MFVec3f coord_point = (MVec3f) coord. get ExposedFi el d(
"point");

coord_point.setValue(p_index, vrm _point);

/'l set the texCoord field if we are generating texture
coords

if (vrml _texpoint !'= null && tex_point !'= null) {
tex_point.setValue(t_index, vrm _texpoint);

}

/1l let's make the coordlndex entries. These are a bit

easi er!

i nt val ues|[]

= newint[(xDinmension -1) * (
zDinmension - 1) * 8];

int i ndex = 0;

81

for (int z =0; z <zDinension - 1; z++) {
for (int x =0; x < xDinension - 1; x++) {
[Fx*x*xxxkxkxkx Gtart CPT Brian Hittner Addition
Sep 2003 *kkkkkkkkkkkkkk
/1l This code was nodified to build 2 triangles per
grid square instead
/1 of one conplete square that the rendering
engi ne woul d then have
/[l to split into triangles at run-tine
val ues[i ndex] x + z * xDi mension
val ues[1 ndex+1] (x +1) + (z + 1)*xDi nensi on
val ues[1 ndex+2] x + (z + 1)*xDi nensi on
val ues[i ndex+3] -1;
val ues[i1 ndex+4] X + z*xDi mensi on;
val ues[i1 ndex+5] (x + 1) + z * xD nension;
val ues[i ndex+6] (x +1) + (z + 1)*xDi nensi on
val ues[1 ndex+7] -1;
[*x*x*xxxxkx%xx End CPT Brian Hittner Addition Sep

2003 kkkkhkkkkhkkkhkkk*x

if (debug)
Systemout.println("Poly:
+val ues[i ndex+1] +

+ val ues[i ndex] +

+ val ues[i ndex+2] + " " +
val ues[i ndex+3] +
("t x +",)" +z 4+ " " 4+ index +
)")
i ndex += 8;
}
}

MFI nt 32 coord_index = (MFINnt32) ifs.getEventln(
"set coordl ndex");
coord_i ndex. set Val ue(i ndex, values);

[*x*x*xxxxkxkxkx Grart CPT Brian Hittner Addition Sep

2003 kkhkkkkkkhkkhkkikk*k*x

val i dHei ghtField = true;
[*x*x*xxxxkx%xx End CPT Brian Hittner Addition Sep

2003 kkkkkkkhkkikkkk*k*x

// we're done!

if (debug)
Systemout.print("CeoEl evationGid: done.");

82

/'l processEvent deals with all of the eventlns that we

support.
[l Currently this includes set_yScal e and set _hei ght

public void processEvent(Event e) {

[*x*x*xxxkkkxkx Grart CPT Brian Hittner Addition Sep
2003 *hkkkkkkkkkkkkk

MFFIl oat hei ght;

[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep
2003 *hkkkkkkhkkkkkk*k

if (debug) Systemout.println("Event received: " +
e.get Name());

/'l set_yScale lets you change the vertical exaggeration
on the fly

if (e.getNanme().equals("set _yScale")) {
Const SFFl oat val ue = (Const SFFl oat) e. getVal ue();
yScal e = val ue. get Val ue();
[*x*x*xxxkxkxkx Grart CPT Brian Hittner Addition Sep
2003 *kkkkkkkkkKkkkk*
hei ght = (M-Fl oat) get Fi el d("hei ght");
i f(height.getSize() > 1)
regener at e(hei ght) ;
el se
val i dHei ghtField = fal se;
[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep

2003 kkkkkkkhkkikkhkkk*x

}

/'l set _height lets you change the hei ght val ues on the
fly

if (e.getNanme().equals("set_height")) {
Const MFFl oat cnffl oat = (Const MFFl oat) e. get Val ue();
fl oat values[] = new float[cnffloat.getSize()];
cnffloat.getVal ue(val ues);
hei ght = new MFFl oat (val ues);
[*x*x*xxxxkkkxkx Gragrt CPT Brian Hittner Addition Sep
2003 k*kkkkkkhkkkkkkk
i f(hei ght. getSize()>1)
regener at e(hei ght) ;
el se
{
/1 a null height field was received, clear the
i ndexed face set

83

Node i ndexedFaceSet, coord;
float[] array new fl oat[O];

int[] intArray = new int[O];
i nt i ndex = 0;
/'l Retrieve the Nodes that define the
| ndexedFaceSet
coord =
(Node) ((SFNode) get Fi el d("coord")) . get Val ue();
i ndexedFaceSet =

(Node) ((SFNode) getFiel d("ifs")). get Val ue();
M~Vec3f coord _point =

(MFVec3f) coord. get ExposedFi el d("point");
coord_poi nt. set Val ue(i ndex, array);
MFI nt 32 coord_i ndex =

(MFI nt 32) i ndexedFaceSet . get Event | n("set _coor dl ndex");
coord_i ndex. set Val ue(i ndex, intArray);
val i dHei ghtField = fal se;

}
[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep

2003 kkhkkkkkkhkkkkk*k*x

}
}

/1 The initialize method is called when the Node is first
| oaded.
/1 Here we grab copies of any necessary
fields/eventln/eventQuts
public void initialize() {
/'l Take copies of all the fields for this node

SFNode geoOrigin

(SFNode) getField("geoOrigin®

);

MFStri ng geoSystem = (MFString) getField(
"geoSystent);

SFString xSpaci ng = (SFString) getField(
"xSpaci ng");

SFString zSpaci ng = (SFString) getField(
"zSpaci ng");

[*x*x*xxxkxkxkx Grart CPT Brian Hittner Addition Sep

2003 R R I b b S b Sk b b S b

MFFl oat height; // This used to be a class variable

84

[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep

2003 kkhkkkhkkhkkhhkkhihkhk*%x

geoGidOigin = ((SFString)
getField("geoGidOrigin")).getValue();
hei ght (MFFl oat) getField("height");
xDi mensi on ((SFI nt32) getField("xDi nension"
)) . getVal ue();
zDi nmensi on
)) . get Val ue();
yScal e
)) . getVal ue();

((SFInt32) getField("zDi nension"

(doubl e) ((SFFl oat) getField("yScal e"

[Fx*x*xxxxkxkxkx Grart CPT Brian Hittner Addition Sep

2003 R R I b b S b Sk b I b

/'l These values are retrieved inside the regenerate
met hod now

/1 coord = (Node) ((SFNode) getField("coord"
)) . get Val ue();
/1 ifs = (Node) ((SFNode) getField("ifs"

)) . getVal ue();
[*x*x*xxxxxkxkx End CPT Brian Hittner Addition Sep

2003 kkkkhkkkkikkkhkk*k*x

debug = ((SFBool) getField("debug"
)) . get Val ue();
debug = true;

/'l convert the spacing strings into double val ues
xlnc =
(Doubl e. val ueO (xSpaci ng. get Val ue())) . doubl eVal ue() ;
zlnc =
(Doubl e. val ueO (zSpaci ng. get Val ue())) . doubl eVal ue() ;
/1l ready to start...
if (debug)
Systemout.println("CGeoElevationGid: " + xDi nension
+ " x " +
zDinmension + "(" + xlnc + ":" + zlnc + ")"

/1l do some sanity checks

if (xDinmension < 2 || zDinmension < 2) {

85

Systemout. println("xD nmension and zDi nensi on nust
be >= 2");
return;

}

/'l Okay, let's initialise the GeoVRML utility class

/'l These cl asses should be installed on the user's
systemand in

/1l their CLASSPATH. |If they are not, then we can't do
anyt hi ng!

try {
geovrm = new GeoVRM.();

} catch (NoC assDef FoundError e) {
Systemout.println("GeoTransform cl asses not
installed in CLASSPATH ");
return;

}

geovrnm .setOrigin(geoO»rigin);
geo_system = geovrm . VRMLToSt ri ng(geoSystem);

/'l build the I ndexedFaceSet fromthe CeoEl evationGid
dat a

[*x*x*xxxkkkxkx Grart CPT Brian Hittner Addition Sep
2003 kkkkkkkkkkkkkk

/1 The geoOrigin is stored as a GCC so that coordinate
poi nts can be

/1 converted between GCC space and render frane space

gccGeoOrigin = geovrm . getOrigin();

/1 The addCord() nethod used here will determ ne the
north east corner of

/1l the grid based on the dinension of the grid and the
geoSystem

String tenmpNort hEast = geovrm . addCoord(geoGi dOri gin,
xl nc*(xDi nmensi on-1),

zl nc*(zDi nmensi on-1),

0.0, geo_systen);

if(geo_systemstartsWth("UTM))

/'l \When the TerrainGid is UM based, both GDC and
UTM coor di nates for

/1 the boundaries are needed because checkBounds()
only uses GDC

gdcSout hwest = convert Ut mfoGdc(geoG i dOri gi n);

gdcNort hEast = convert Ut mfoGdc(t enpNort hEast) ;

ut nSout hWwest = new Ut m Coord_3d();

86

ut mMNort hEast = new Ut m Coord_3d();
Gdc_To_U m Converter.lnit();
Gdc_To_U m Converter. Convert (gdcSout hWest ,
ut nSout hWest) ;
Gdc_To_U m Converter. Convert (gdcNort hEast,
ut mMNor t hEast) ;
}

el se
{
/1 For GDC TerrainGids, only GDC coordinates are
needed for the boundaries
gdcSout hwest par se@C(geoGi dOri gi n);
gdcNor t hEast par seGC(t enpNor t hEast) ;
ut nSout h\West nul | ;
ut mNor t hEast nul | ;

}

/[l This terrain grid nmust register with the terrain
manager so that entities

/'l can reference this terrain grid for positioning
data | ater

manager = CGeoManager . get GeoManager () ;

manager . addGri d(t hi s);

regenerate(height); // Added the paraneter since the
height field is now

// a local variable instead of a
cl ass vari abl e

}

/| Takes a gdcCoordinate as a String and turns it into a
Gdc_Coord_3d
private Gdc_Coord_3d parseGDC(String gdcCoordi nate)
{
Gdc_Coord_3d coord,;
doubl e[] array = new doubl e[3];
StringTokeni zer tokenizer = new

StringTokeni zer (gdcCoordi nate, " ");
for(int i =0; i <= 2; i++)
array[i] = new

Doubl e(t okeni zer. next Token()) . doubl eVal ue();
coord = new Gdc_Coord_3d(array[0], array[l], array[2]);
return coord;

}

/1 Warning: this routine only works if the current
geoSystentstring is set
/1 to UTMw th a zone included

87

private Gdc_Coord_3d convert Ut mroGdc(String utm

{
Gcc_Coord_3d tenpGeec = geovrni . get Coord(utm
geo_system;
float[] floatGidArray = new float[3];
float Gi dArray[0] new Doubl e(tenpCGecc. x) . fl oat Val ue();
floatGri dArray[1] new Doubl e(tenpCcce. y). fl oat Val ue();
float Gi dArray] 2] new Doubl e(tenpCGecce. z) . fl oat Val ue();
String tempOrigin geovrnl . geoCoord(fl oat Gi dArray,
"G
[l tempOriginis nowin GD coordinate space (lat/1ong)
as a String
Gdc_Coord_3d tenpGdc = parseCGC(tenpOrigin);
return tenpGdc;
}

/'l receives a location and checks to see if that |ocation
is within the area

/'l covered by this particular GeoTerrainGid

publ i ¢ bool ean checkBounds(Gdc_Coord_3d | ocati on)

i f(validHei ghtField)
{
if(location.latitude >= gdcSout hWest. | atitude &&
| ocation.latitude <= gdcNorthEast. | atitude &&
| ocation. | ongi tude >= gdcSout hWest . | ongi t ude &&
| ocation. | ongitude <= gdcNorthEast. | ongitude)
return true
el se
return fal se;
}

el se
return fal se;

/'l receives a location and cal cul ates the proper rotation
that will rotate an

/'l object to coincide with the normal of the ground at
that | ocation

public SFRotation getOrientation(Gdc_Coord_3d | ocation)

{
doubl e X, Y, zZ;
i nt partial X, partial Z;
doubl e fractionX, fractionZz
doubl e[tri Coords = new doubl e[3][3];

11]
doubl e[][] vectors = new doubl e[2][3];
doubl e[] t enpNor mal = new doubl e[3] ;

88

doubl e[] rotati onVector = new doubl e[3];

doubl e[] upVect or = new doubl e[3] ;
SFRot at i on out Rot at i on;

doubl e rot ati onAngl e;

i nt I ndex;

M~Vec 3f coord_point;

float[] coor di nat es;

Node coord;

coord =

(hbde)((Sthde)get;ield("coord")).getvalue();

/1l Check if this terrain grid was built using UM
if(geo_systemstartsWth("UTM))
{

/'l the location has to be converted to UTM al so to
cal cul ate el evation

Ut m Coord_3d newLocation = new Ut m Coord_3d();

Gdc_To_U m Converter.Init();

Gdc_To_U m Converter. Convert (|l ocati on, newLocation);

X = newLocati on. X;
Zz = newlLocation.y;
}
el se

/1 This grid was built in GDC, so no conversion is

necessary
X = location.!latitude;
z = location.longitude;
}

/1l Calculating the orientation requires using the
coordi nates array that was

/1 built by buildCoordi nateSet (height). Here it is
retrieved.

coord_point = (MFVec3f)coord. get ExposedFi el d("point");

/'l Each coordinate takes 3 float values (x, y, 2)

coordi nates = new fl oat[coord_point.getSize() * 3];

coord_poi nt. get Val ue(coor di nat es) ;

/1 1 am assum ng that every object created uses the
standard VRML conventi on

/[l of up being the Y axis. GeoVRM. up does not matter
her e.

upVector[0] = 0.0;
upVector[1l] = 1.0;
upVector[2] = 0.0;

89

/1 This gives the nunber of postings to travel in the x
and z directions to

/1 reach the lower left corner - not the actual x and
z coordi nate val ues.

/1 and the value is always truncated (rounded down).

if(geo_systemstartsWth("UTM))

{
partial X = (int)((x - utnSouthWest.x)/xlnc);
partial Z = (int)((z - utnSouthWest.y)/zlnc);
}
el se
{
partial X = (int)((x - gdcSout hWest .|l atitude)/xlnc);
partialZ = (int)((z - gdcSout hWest .| ongitude)/zlnc);
}

/'l Next, get the fraction of one space in both the X and
Z directions left over from

/1l the partials found above. These are used to
determ ne which half of the square

/1l this coordinate falls in (lower left half or upper
right). This is needed to

/1 determ ne which point is the third point and what
order to grab the second

/1 and third point in.

if(geo_systemstartsWth("UTM))

fractionX = ((x - utnBSouthWest.x)/xlnc) - partialX;
fractionZ = ((z - utnBouthWest.y)/zlnc) - partial Z
}
el se
{ . .
fractionX = ((x - gdcSout hWest. |l atitude)/xlnc) -
partial X;
fractionZ = ((z - gdcSout hWest .| ongitude)/zlnc) -
partial Z;
}

/1l The terrain data is received as a 1 dinensional array
of hei ght val ues.

/[l The array can be thought of as a checkerboard
pattern wi th hei ght val ues

/[l coinciding with every corner of every square. The
terrain is drawn by

/1l breaking up the checkerboard into triangles. This
code uses the foll ow ng

/1l pattern to break up the squares:
[/ +---+

90

I | /]

I | 7 |

I [/ |

[/ +---+

/'l Extract the three coordinates of the triangle that
contains the given | ocation.

/'l each of these coordinates will have the geoOrigin
added to it to bring the

/1 point back into GCC space from screen space.

/1l The first coordinate is always the |lower |eft corner.

index = (partial X + partial ZxDi nension)*3; // index
now points at |lower |eft corner

tri Coords[0][0] coordi nat es[i ndex] + gccCGeoOri gin. x;

tri Coords[O][1] coordi nat es[i ndex+1] + gccCGeoOrigin.y;

tri Coords[0][2] coor di nat es[i ndex+2] + gccGeoOrigin. z;

/1l FractionX and fractionZ are used to determ ne which
hal f of the square
/1l this coordinate is in (the lower right or upper
left). If fractionX is
/[l greater than fractionZ, then this coordinate is in
the lower right half.
if(fractionX > fractionZz)
{
/'l Get the lower right corner of the square for
coordi nate 2
index = ((partial X + 1) + partial Z*xDi nensi on) *3;
tri Coords[1][0] coordi nates[i ndex] + gccCGeoOrigin. x;
tri Coords[1][1] coordi nat es[i ndex+1] +
gccCGeoOrigin.y;
tri Coords[1][2]
gccGeoOrigin. z;
/[l Get the upper right corner of the square for
coordi nate 3
index = ((partial X + 1) + (partialZzZ +
1) *xDi mensi on) * 3;
tri Coords[2][0]
tri Coords[2][1]
gccCGeoOrigin.y;
tri Coords[2][2]
gccGeoOrigin. z;
}
el se
{
[/l Get the upper right corner of the square for
coordi nate 2

coordi nat es[i ndex+2] +

coordi nat es[i ndex] + gccCGeoOri gin. x;
coordi nat es[i ndex+1] +

coordi nat es[i ndex+2] +

91

index = ((partial X + 1) + (partialzZ +
1) *xDi mensi on) * 3;

tri Coords[1][0]

tri Coords[1][1]
gccCGeoOrigin.y;

triCoords[1][2]
gccGeoOrigin. z;

/[l Get the upper left corner of the square for
coordi nate 3

index = (partial X + (partialZ + 1)*xDi nensi on) *3;

tri Coords[2][0] coordi nat es[i ndex] + gccCGeoOrigin. Xx;

tri Coords[2][1] coordi nat es[i ndex+1] +
gccGeoOrigin.y;

tri Coords[2][2]
gccGeoOrigin. z;

}

/[l Get two vectors fromthe coordinates of the plane.
It is inmportant to

/'l get the vectors in the order shown or you could get
a tangent normal pointing

/1l directly into the polygon instead of directly out of
t he pol ygon

for(int i =0; I <= 2; |++4)

coordi nates[i ndex] + gccCGeoOrigin. x;
coordi nat es[i ndex+1] +

coordi nat es[i ndex+2] +

coordi nat es[i ndex+2] +

vectors[O][i]
vectors[1][i]

}

/'l Next, determ ne the normal using a cross product:
/1 | [
j k I
/1 normal = vector[0O] x vector[1l] = |vectors[O0][O]
vectors[0][1] vectors[O0][2]]

tri Coords[O][i] - triCoords[1][i];
tri Coords[O][i] - triCoords[2][i];

| vect ors[1] [O]

vectors[1][1] vectors[1l][2]]

tempNormal [0] = vectors[O][1] *vectors[1][2] -
vectors[0][2] *vectors[1][1];

tenpNormal [1] = (vectors[O][O] *vectors[1][2] -
vectors[0][2] *vectors[1][0])*(-1);

tenmpNormal [2] = vectors[0][0] *vectors[1][1] -
vectors[0][1] *vectors[1][O0];

// To calculate the vector we nust rotate around to nake
an obj ect coincide

/1 with the normal we have to take the cross product of
t he normal vector

92

/1 and the vector that represents the up direction for
the object that is

/1l to be rotated.

rotationVector[0] = upVector[1l]*tenpNornmal[2] -
upVector[2] *t enpNor mal [1] ;

rotationVector[1l] = (-1)*(upVector[O]*tenpNormal [2] -
upVector[2] *tenpNormal [0]) ;

rotationVector[2] = upVector[O] *tenpNornmal [1] -
upVector[1] *t enpNor mal [0] ;

/1 Normalize the rotationVector so that the x, y, and z
values will definately

/[l fit into float variables

doubl e rotati onMagni tude =
Mat h. sqrt(rotationVector[O] *rotationVector[0] +

rotationVector[1l]*rotationVector[1l] +

rotationVector[2]*rotationVector[2]);

rotati onVector[0] = rotationVector[O0]/rotationMagnitude;

rotati onVector][1] rotati onVector[1l]/rotati onMagnitude;

rotati onVect or[2] rotationVector[2]/rotationMagnitude;

/'l We al so need the angl e between the upVector and
normal vector so that we

/1 know how far to rotate the object to coincide with
t he normal vector.

/1 The cosine of this angle is equal to the dot product
of the upVector

/1 and normal vector.

doubl e dot Product = upVector[O0] *tenpNormal [0] +
upVector[1] *tenpNormal [1] +

upVector[2] *t enpNor mal [2] ;

doubl e upMagni tude = Mat h.sqrt (upVector[O] *upVector[0] +

upVector[1] *upVector[1] +

upVect or[2] *upVector|[2]);
doubl e nor mal Magni t ude =
Mat h. sqrt (t enpNor mal [O] *t enpNor mal [0] +
t enpNor mal [1] *t enpNor nmal [1]
+
t enpNor mal [2] *t enpNor mal [2]) ;
rotati onAngle =
Mat h. acos(dot Product/ (upMagni t ude* nor mal Magni t ude)) ;
/1 W now have what we need to build the rotation vector
that the target object
[l will use to rotate itself to coincide with the
nor mal
out Rot ati on = new SFRot ati on(new
Doubl e(rotationVector[O0]). fl oat Val ue(),
new
Doubl e(rot ati onVector[1]). fl oat Val ue(),

93

new

Doubl e(rotati onVector[2]).fl oat Val ue(),

new

Doubl e(rot ati onAngl e). fl oat Val ue());
return out Rotation;

}

public Gdc_Coord _3d get El evati on(Gdc_Coord_3d | ocati on)

{

doubl e X, Y, Z,

i nt partial X, partial Z;

doubl e fractionX, fractionz

doubl e[][] tri Coords = new doubl e[3] [3];
doubl e[][] vectors = new doubl e[2] [3];
doubl e[] t enpNor mal = new doubl e[3] ;
doubl e[] upVect or = new doubl e[3] ;

i nt i ndex;

Gdc_Coord_3d outLocation = new Gdc_Coord_3d();
MFFI oat hei ght ;

float[] hei ght Arr ay;

doubl e xOrigin, zOigin;

if(geo_systemstartsWth("UTM))

{

// the location has to be converted to UTM also to

cal cul ate el evati on

Ut m Coord_3d newlLocation = new Utm Coord_3d();
Gdc_To_U m Converter.Init();

Gdc_To_U m Converter. Convert (|l ocati on, newLocation);
X = newlLocati on. x;

Zz = newlLocation.y;

XxOrigin = ut nSout hWest . x;

zOrigin ut nSout h\West . y;
}
el se
{
/1 This grid was built in GDC, so no conversion is
necessary
x = location.!latitude;
z = location.longitude;
XOrigin = gdcSout hWest . | atit ude;
zOrigin = gdcSout hWest . | ongi t ude;
}

hei ght = (MFl oat) get Fi el d("hei ght");
hei ght Array = new fl oat[hei ght. get Si ze()];
hei ght . get Val ue(hei ght Array) ;

94

/'l Get the partial values - these are the nearest whole
nunber coordi nates

/'l past zero to locate the |ower left corner of the
square this coordinate is in.

/1 Note: this gives the nunber of postings to travel in
the x and y directions to

/1 reach the lower left corner - not the actual x and
y coordi nate val ues.
partial X = (int)((x - xOigin)/xlnc);
partialZ = (int)((z - zOrigin)/zlnc);

/'l Next, get the fraction of one space in both the X and
Z directions left over from

/[l the partials found above. These are used to
determ ne which half of the square

/[l this coordinate falls in (lower left half or upper
right). This is needed to

/1 determ ne which point is the third point and what
order to grab the second

/1 and third point in.

fractionX = ((x - xOigin)/xlnc) - partial X

fractionZ = ((z - zOrigin)/zlnc) - partial Z;

/1 W need to get 3 coordinates so we can define a plane
and

/1 determne the elevation at a specific point

/'l The first coordinate is the lower left corner of this
grid box

tri Coords[0][0]

tri Coords[O][1]
partial X)];

triCoords[O0][2] = (partialZ * zlInc) + zOrigin;

/'l The fractionX and fractionZ are used to determ ne
whi ch half of the square

[l this coordinate is in (the lower right or upper
left).

/1 If fractionX is greater than fractionZ, then this
coordinate is in the

/1 lower right half of the square. This neans we need
the |l ower right corner

/1 and the upper right triangle for the 2nd and 3rd
coor di nat es.

if(fractionX > fractionZz)

{

/'l Get the lower right corner of the square for

coordi nate 2

(partial X * xlInc) + xOrigin;
hei ght Array[(partial Z * zDi nensi on +

95

tri Coords[1][0]

tri Coords[1][1]
(partial X + 1)];

tri Coords[1][2] (partialzZz * zlnc) + zOrigin;

/1 Get the upper right corner of the square for
coordi nate 3

tri Coords[2][0] ((partial X + 1) * xlnc) + xOigin;

tri Coords[2][1] hei ght Array[(partial Z +
1)*zDi mension + (partial X + 1)];

triCoords[2][2] = ((partialZ + 1) * zInc) + zOrigin;

((partial X + 1) * xlnc) + xOigin;
hei ght Array[parti al Z*zD nmensi on +

/1 The el se clause neans that we are in the upper left
hal f of the square

/1 and need the upper right corner and upper |eft
cor ner.

el se

/1 Get the upper right corner of the square for
coordi nate 2

tri Coords[1][0] ((partial X + 1) * xlnc) + xOrigin;

tri Coords[1][1] hei ght Array[(partial Z +
1)*zDimension + (partial X + 1)];

triCoords[1][2] = ((partialZz + 1) * zInc) + zOrigin;

/1 Get the upper left corner of the square for
coordi nate 3

tri Coords[2][0]

tri Coords[2][1]
1)*zDi mensi on + parti

tri Coords[2][2]

}

/'l The 3 coordinates just found are what we need to
determ ne the elevation at the
/'l specified point and the normal for the | ocation.
/'l First, get two vectors fromthe coordinates of the
plane. It is inmportant to
/'l get the vectors in the order shown or you could get
a tangent normal pointing
[l directly into the polygon instead of directly out of
t he pol ygon
for(int i =0; i <= 2; i++)
{
vectors[1][i]
vectors[O][i]

}

/'l Next, determ ne the normal using a cross product:

96

(partial X * xlInc) + xOrigin;

hei ght Array[(partial Z +

I X];

((partialz + 1) * zlInc) + zOrigin;

I 1 n

tri Coords[O][i] - triCoords[2][i];
tri Coords[O][i] - triCoords[1][i];

/1 | i

j k I

/1 normal = vector[0O] x vector[1l] = |vectors[O][O]
vectors[0][1] vectors[O0][2]]

/1 | vect ors[1] [O]

vectors[1][1] vectors[1l][2]]

tempNormal [0] = vectors[O][1] *vectors[1][2] -
vectors[0][2] *vectors[1][1];

tenmpNormal [1] = (vectors[O][O] *vectors[1][2] -
vectors[0][2] *vectors[1][0])*(-1);

tenpNormal [2] = vectors[O][O0] *vectors[1][1] -
vectors[0][1] *vectors[1][O0];

/1l Finally, calculate the height for the original
coordi nate using the equation:

/1

/1 O = normal [0] (x - coordinates[0][0]) + normal [1] (y
- coordinates[0][1]) +

/1 normal [2] (z - coordi nates[0][2]

/1

y = ((-1)*tenpNormal [0] *(x - triCoords[O][0]) -
tempNormal [2]*(z - triCoords[0][2]))

/[tenpNormal [1] + triCoords[O][1];

/1 W& now have the cal cul ated el evati on which can be
conbined with the | at

/1 and |l ong val ues passed in to get the new coordi nate
wi th el evation equal

/[l to the terrain.

out Location. el evation = vy;

out Location.latitude = location.!|atitude;

out Location. | ongitude = | ocation. | ongitude;

return outLocation;

}
[*x*x*xxxxxkxskx End CPT Brian Hittner Addition Sep 2003

kkhkkkkhkkikkkkk*k*x

}

/'l EOF. GeoEl evationGid.java

97

C. GEOLOCATION3 NODE

This classis the interface for objects that need to use GeoTerrainGrids. This class
allows the user to decide whether to have GeoTerrainGrids automatically set the
elevation of the object to surface level and whether to have the orientation of the object
coincide with the normal of the terrain. Otherwise, the node operates exactly asits
predecessors GeoL ocation and GeoL ocation2. This code has the sane license as the

GeoTerrainGrid does asit isaso originally written by SRI.

/1

/'l Filenanme: GeolLocation3.]java
11

/'l Aut hors:

/1 Martin Reddy, SRI International - 21 August 1999

/1 John Brecht, SRI Internation - 31 March 2000

/1 CPT Brian Hittner, US Army, Naval Postgraduate Schoo
student - Sep 2003

I

/'l Purpose:

/1 This class inplenments a new Transform node for VRM.
It all ows you

/1 to take any arbitrary VRWL context and geo-reference

it, i.e. place
/1 it at a specific point on the planet.
/1

/1 This code requires access to the GeoTransform Java
package, i ncl uded

/1 as part of the GeoVRML source code distribution

/1

/'l License:

/1 The contents of this file are subject to GeoVRWM.
Publ i c License

/1 Version 1.0 (the "License"); you may not use this file
except in

/1 conpliance with the License. You may obtain a copy of
t he License at

/1 http://ww. geovrm .org/1.0/1icense/.

[/
[/ Software distributed under the License is distributed
on an "AS

I | S" basis, WTHOUT WARRANTY OF ANY KI ND, either
express or

/1 inplied. See the License for the specific | anguage
gover ni ng

/1 rights and Iimtations under the License.

I

98

/1 Portions are Copyright (c) SRI International, 2000.
I

/'l Revi sion:

/'l $ld: GeoLocation.java,v 1.1.1.1 2000/06/15 16:49: 27
reddy Exp $

I

[l Martin Reddy (21 Aug 1999) - initial version

/1 John Brecht (31 Mar 2000) - support set geoCoords
eventln

/1 Brian Httner (Sep 2003) - works with GeoManager and
added support

[/ f or aut oEl evati on and
aut oSurfaceOri entati on bool eans
/1

i nport java.l ang. *;

import vrm . *;

inmport vrm .field. *;

i mport vrm . node. *;

i nport geotransform coords. *;

i nport org.web3d. geovrm . GeoVRM,;

[Fx*xxxxkkkxkxkxkx Gtart CPT Brian Hittner change
R R R S b b b S S S S S S S S

inport java.util.*;

[Fxxxxxxxxkxkxkxkx Fnd CPT Brian Hittner change

kkhkkkhkkhkhkkhhkkhkkhkkhhikkhkkhkkkhkk*k

public class GeolLocation3 extends Script {

MFStri ng geoSystem
SFNode geoOri gi n;
GeoVRM. geovrm ;
Node transform
bool ean debug;
SFString geoCoords_changed;
[Fxxxxxxkxkxkxkxkx Start CPT Brian Hittner change
R R R S S b S S S b S S S S
bool ean aut oEl evati on, autoSurfaceOrientation;
CeoManager nanager,
SFBool aut oEl evati on_changed,
aut oSurfaceOri ent ati on_changed;
[Fx*xxxxxxxkxkxxxxx End CPT Brian H ttner change

kkhkkkhkkhkhkkhhkkhkkhkkkhkhikkhkkhrkhkkki*k

/'l process the set_geoCoords eventln by calling
updat eGeoCoor ds()

99

/1 and produce the geoCoords_changed event Qut.

public void processkEvent(Event e) {
String nane = e.get Nanme();
if (debug) Systemout.println("Event received: " +
name);
if (nane.equal s("set _geoCoords")) {
Const SFString csfstring = (Const SFStri ng)
e. get Val ue();
SFString sfstring = new SFStri ng(
csfstring. getValue());
updat eGeoCoor ds(sfstring);
geoCoor ds_changed. set Val ue(sfstring);
}

[Fx*xxxxkxkxkxkxkx Gtart CPT Brian Hittner change

R R I b Sk S b S S b S b S S b S b b 4

i f (nane. equal s("set _aut oEl evation"))
{
Const SFBool csfbool = (Const SFBool) e. get Val ue();
aut oEl evati on = csfbool . getVal ue();
Const SFString csfstring = (Const SFStri ng)
e. get Val ue();
SFString sfstring = new SFStri ng(
csfstring. getValue());
updat eGeoCoor ds(sfstring);
aut oEl evati on_changed. set Val ue(csf bool) ;

}

i f(name. equal s("set _autoSurfaceOrientation"))
{
Const SFBool csfbool 2 = (Const SFBool) e. get Val ue() ;
aut oSurfaceOrientati on = csfbool 2. get Val ue();
Const SFString csfstring = (Const SFStri ng)
e. get Val ue();
SFString sfstring = new SFStri ng(
csfstring. getValue());
updat eGeoCoor ds(sfstring);
aut oSurfaceOri ent ati on_changed. set Val ue(csf bool 2) ;

}

[Fxxxxxxxxkxkxkxkx pFnd CPT Brian Hittner change

kkhkkkhkkhkhkkhhkkhkkhkkhkhkkhkkhkkkhkkk*k

}

[/ The initialize nmethod is called when the Node is first
| oaded.

/'l Here we grab copies of any necessary
fields/eventln/eventQuts

100

/1l and do the coordinate transformation in order to find
t he

/1l correct geolocation for the transformis childrens.

public void initialize() {
/| Take copies of all the fields for this node
geoOrigin = (SFNode) getField("geoOrigin");
geoSystem = (MFString) getField("geoSystent);
SFString geoCoords = (SFString) getField("geoCoords"

);

transform = (Node) ((SFNode) getField("transfornt
)) . getVal ue();

debug = ((SFBool) getField("debug")).getValue();

geoCoords_changed = (SFString) get Event Qut (
"geoCoords_changed”);

[Fx*xxxxkxkxkxkxkx Gtart CPT Brian Hittner change
*khkkkkkhkhkhkhkhkhkhkhkhkhkkkkk
aut oEl evation =
((SFBool) get Fi el d("aut oEl evati on")) . get Val ue() ;
aut oSurfaceOrientation =
((SFBool) get Fi el d("autoSurfaceOrientation")). getVal ue();
aut oEl evati on_changed =
(SFBool) get Event Qut (" aut oEl evati on_changed") ;
aut oSurfaceOrientation_changed =

(SFBool) get Event Qut (" aut oSurfaceOri entati on_changed") ;
manager = CGeoManager . get GeoManager () ;
[Fxxxxxxxxkxkxkxkx pFnd CPT Brian Hittner change

kkhkkkhkkhkhkkhhkkhkkhkkhhikkhkkhkkkhkkk*k

if (debug) Systemout.println("Geolocation:");

/[l Okay, let's initialise the GeoVRML utility class
/'l These cl asses should be installed on the user's
systemand in
/1l their CLASSPATH. |If they are not, then we can't do
anyt hi ng!
try {
geovrm = new GeoVRM();
} catch (NoC assDef FoundError e) {
Systemout.println("GeoTransform cl asses not
installed in CLASSPATH ");
return;
}
geovrnm .setOrigin(geoO>rigin);
updat eGeoCoor ds(geoCoor ds) ;
}

101

/1 Converts the inputed geoCoords to GCC and sets the
t ransf orm
/1 of the Node appropriately.
public void updat eGeoCoords(SFString geoCoords) {
[x**xxxxxkxkxkxxkxkxx Gtart CPT Brian Hi ttner change
R R I S b b b S b S S b b S S S S S
Gdc_Coord_3d tenpPosition = null;
CeoTerrainGid terrainGid = null;
SFRot ati on tenpRot ati on;
/1 1f autoEl evation or autoSurfaceOrientation is set,
then a GeoTerrainGid
/1l for this location is needed
i f(autoEl evation || autoSurfaceOientation)
{
/'l The coordinate nmust be in GDC, so UTM coordi nates
nmust be converted
i f(geoSystemtoString().startsWth("UTM))
tenpPosition =
convert U mroGdc(geoCoor ds. get Val ue()) ;
el se
t enpPosi ti on = parseCGDC(geoCoords. get Val ue());
terrainGid = manager.getGi d(tenpPosition);
if(terrainGid==null)

debugQut (" Manager did not |locate a suitable terrain
grid for: " +
geoCoords.toString());
debugQut ("GDC Coord_3d: Latitude: " +
tenpPosition.latitude + " Longitude:
+ tenpPosition.longitude +
+ tenpPosition. el evation);
return;
}

el se
{
/1 When aut oEl evation is true, use the terrain grid

to determ ne el evation
i f (aut oEl evati on)

El evati on:

/1 This call to getElevation() will fill in the
proper el evation

tenpPosition =
terrai nGid. getEl evati on(tenpPosition);

/'l Repl ace geoCoords current value with the new
val ue that has el evation

geoCoor ds. set Val ue(gdcToStri ng(tenpPosition));

102

}
}
}

[Fx*xxxxxxkxkxkxkx pFnd CPT Brian Hittner change

R R I b Sk S b S b b S b S S b S b b 4

/1 Find out the location that the user wants to
georeference to

/[l This is essentially the translation vector for the
transform

Gcc_Coord_3d gcc = geovrnl . get Coord(geoCoords,
geoSystem);

SFVec3f xformtrans = (SFVec3f)
transf orm get ExposedFi el d("translation");

xformtrans. setValue((float) gcc.x, (float) gcc.y,
(float) gcc.z);

if (debug)

Systemout.println(" translation =" + gcc.x +" "+

gcc.y +" "+ gcc.z);

// Now let's work out the orientation at that |ocation
in order

// to maintain a view where +Y is in the direction of
gravitional

/1l up for that region of the planet's surface. This
w il be the

/'l value of the rotation vector for the transform

float orient[] = new float[4];

SFRot ati on xformrot = (SFRotation)
transf orm get ExposedFi el d("rotation");
[Fx*xxxxkxkxkxkxkx Gtart CPT Brian Hittner change

R R I b Sk S b S S b S b S S b S b b 4

i f(autoSurfaceOrientation)
{
tenpRotation =
terrainGid.getOrientation(tenpPosition);
xformrot. setVal ue(tenpRot ation);

}

[Fxxxxxxxxkxkxkxkx Fnd CPT Brian Hittner change

kkhkkkhkkhkhkkhhkkhkkhkkhkhikkhkkhrkhkkkx*k

el se

{

geovrni . get Local Orientation(gcc, orient);
xformrot.setValue(orient[O], orient[1], orient[?2],
orient[3]);

103

if (debug)
Systemout.println(" rotation =" + orient[0] + "
+ orient[1l] +
+ orient[2] +" " + orient[3] + " (" +
orient[3] * 57.29578f + " deqg)");

/1 Finally, we can set the scale field of the transform
based
/1 upon the gl obal GeoVRM. cl ass scal eFact or.
SFVec3f xformscale = (SFVec3f)
t ransf orm get ExposedFi el d("scal e");
fl oat scale = (float) (1.0 / geovrni.scal eFactor);
xform scal e. set Val ue(scale, scale, scale);

}

[Fx*xxxxxkxkxkxkxkx GStart CPT Brian Hittner change

R R I b S S b Sk S b S b S S b S b b 4

/| Takes a gdcCoordinate as a String and turns it into a
Gdc_Coord_3d
private Gdc_Coord 3d parse@C(String gdcCoordi nate)
{
Gdc_Coord_3d coord,;
doubl e[] array = new doubl e[3];
StringTokeni zer tokenizer = new

StringTokeni zer (gdcCoordi nate, " ");
for(int i =0; i <= 2; i+4)
array[i] = new

Doubl e(t okeni zer . next Token()) . doubl eVal ue();
coord = new Gdc_Coord_3d(array[0], array[1l], array[2]);
return coord;

}

/| Takes a Gdc_Coord _3d coordinate, and returns a string
(in GDC)
private String gdcToString(Gdc_Coord_3d coordi nate)
{
String coordinateString = new String();
coordi nateString += new
Doubl e(coordi nate.l atitude).toString();
coordinateString += " ";
coordi nateString += new
Doubl e(coordi nate. |l ongi tude).toString();
coordinateString += " ";
coordi nateString += new
Doubl e(coordi nate. el evation).toString();
return coordi nateString;

104

}

/1 Warning: this routine only works if the current
geoSystentstring is set
/[l to UTMw th a zone incl uded
private Gdc_Coord_3d convert Ut mroGdc(String utm
{
Gcc_Coord_3d tenpGeec = geovrni . get Coord(utm
geoSystem toString());
float[] floatGidArray = new float[3];
float Gi dArray[0] new Doubl e(tenpCGecc. x) . fl oat Val ue();
float Gi dArray[1] new Doubl e(tenpCGcce.y). fl oat Val ue();
float Gri dArray[2] new Doubl e(t enmpCcc. z). fl oat Val ue();
String tenpLocation = geovrm . geoCoord(fl oatGi dArray,
"G
[l tempOriginis nowin GD coordinate space (lat/long)
as a String
Gdc_Coord_3d tenpGdc = parseGC(tenplLocation);
return tenpGdc;

}
public void debugQut(String nessage)
{
i f (debug)
System out . printl n(nmessage) ;
}

[Fxxxxxxxkxkxkxkxxx End CPT Brian H ttner change

kkhkkkhkkhkhkkhhkkhkkhkkhkhkkhkkhrkhkkx*k

}

/1 EOF:. GeolLocation.java

105

D. EXAMPLE OF GEOTERRAINGRID

This code is shown in VRML format and declares a GeoTerrainGrid. This code
does not display anything by itself because it does not have any viewpoint defined. The
purpose of this code isto be used as part of another X3D or VRML program. The
magjority of the data for the terrain was removed, though, because it just generated pages
of numbers. For the full version of this program with the data intact, check the SAVAGE
website. Thereisan indexed line set in this code that is not needed for the code to work.
It was added simply to outline the terrain which makes each individual terrain grid much
more visible when rendered as part of agroup of terrain grids

#VRML V2.0 utf8

X3D-to-VRML- 97 XSL transl ati on autogenerated by

X3dToVrm 97. xsl

#

http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3dToVrm 97
. Xsl

[X3D] VRML V3.0 utf8

EXTERNPROTO GeoCoordi nate [
field SFNode geoOrigin # NULL
field MString geoSystem # ["CDC']
field MString point # []

1 I
"GeoVRM./ 1. 1/ pr ot os/ GeoCoor di nat e. wr | #GeoCoor di nat e"

"../../GeoVRM/ 1. 1/ pr ot os/ GeoCoor di nat e. w | #GeoCoor di nat e"
"C./ Program

Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoCoor di nat e. w | #GeoCoor di nat e"
"file://1/C/Program

Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoCoor di nat e. w | #GeoCoor di nat e"

"urn: web3d: geovrni : 1. 0/ pr ot os/ GeoCoor di nat e. w | #GeoCoor di na
te"

"http://ww. geovrm .org/ 1. 0/ prot os/ GeoCoor di nat e. w | #GeoCoo
rdi nat e"

]
EXTERNPROTO GeoTerrai nGid |

field SFNode geoOrigin #NULL

field MFStri ng geoSystem #"CD' "WE"]
field SFString geoGidOigin #0 0 0"

field SFI nt 32 xDi mensi on #0 #10,)

106

field SFString xSpaci ng #1.0" # (0,)
field SFI nt 32 zDi nmensi on #0 #10,)
field SFString zSpaci ng #'1.0" # (0,)
field MFFI oat hei ght #[] #(-,)
eventln MFFI oat set _hei ght
field SFFI oat yScal e #1.0
eventln SFFI oat set _yScal e
exposedFi el d SFNode col or #NULL
exposedFi el d SFNode t exCoord

#Text ureCoordi nate {}
exposedFi el d SFNode nor mal #NULL
field SFBool nor mal Per Vert ex #TRUE
field SFBool ccw #TRUE
field SFBool col or Per Vert ex #TRUE
field SFFI oat creaseAngl e #0 #[0,]
field SFBool solid #TRUE

]

EXTERNPROTO CGeoMet adata [
exposedField MFString url
exposedField MFString sumary
dat a

]

[

"GeoTerrai nGid. wl #GeoTerrai nGi d"

]

exposedFi el d MFNode

[

*HHH

“../../GeoVRM./ 1. 1/ pr ot os/ GeoMet adat a. wr | #GeoMet adat a"

"GeoVRM./ 1. 1/ pr ot os/ GeoMet adat a. wr | #GeoMet adat a"
"C./ Program

Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoMet adat a. wr | #GeoMet adat a"
“file:///C/Program

Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoMet adat a. wr | #GeoMet adat a"

"urn: web3d: geovrni : 1. 0/ pr ot os/ GeoMet adat a. w | #GeoMet adat a"

“http://ww. geovrm .org/ 1.0/ prot os/ GeoMet adat a. wr | #GeoMet ad
ata"
]
EXTERNPROTO GeoOrigin [
exposedField MString geoSystem # ["CDC']
exposedField SFString geoCoords #""
field SFBool r ot at eYUp # FALSE
10
"GeoVRMWL/ 1. 1/ prot os/ GeoOri gi n. w | #GeoOri gi n”
"../../GeoVRM./ 1. 1/ protos/ GeoOri gi n. w | #GeoOri gi n"
"C./ Program
Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoOri gi n. wr | #GeoOri gi n"
“file:///C/Program
Fi | es/ GeoVRM./ 1. 1/ prot os/ GeoOri gi n. wr | #GeoOri gi n"

107

"urn: web3d: geovrni : 1. 0/ prot os/ GeoOri gi n. w | #GeoOri gi n*

"http://ww. geovrm .org/ 1.0/ protos/ GoOigin wl#GoOigin"

]
[Scene]

GeoMet adat a {
summary ["DTED2, N290E520"]
url ["N290E520DTED2. wr | "]

}

DEF ORIA N GeoOrigin {
geoCoords "29.0 52.0 0.0"

}

Shape {
appear ance Appearance {
mat erial Material {
di ffuseColor 0.4 0.6 0.3
em ssiveColor 0 0.05 O
}
}
geonetry CGeoTerrainGid {
geoOrigin USE ORIA N
creaseAngl e . 785
geoGidOrigin "29.71186440677966 52.6271186440678 0"
geoSystem ["CDC']
hei ght [2013 2012 2011 2009 2007 2007 2008 2010 2013
2015 2017 2022
--- Data Renoved for Brevity ---
1972 1978 1986 1995 2000 1999 1993 1981 1970 1957 1946 1934
1921]
xDi mensi on 61
xSpaci ng "2.824074074074074E- 4"
zDi nmensi on 61
zSpaci ng "2.824074074074074E- 4"

}
Shape {
appear ance Appearance {
material Material {
em ssiveColor 0.8 0.8 0.8
}
}
geonetry DEF LI NESET | ndexedLi neSet {
coordindex [0123456789 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24

--- Data Renoved for Brevity ---
232 233 234 235 236 237 238 239 240 241 242 243 -1 -1]

108

coord CeoCoordinate {
geoOrigin USE ORIA N
geoSystem ["GDC']
point ["29.7118644 52.6271186 2013.0 29.7121468
52.6271186 2004.0
--- Data Renoved for Brevity ---
52.64406308851225 1921. 0"]

}
}
}

109

E. MULTIPLE GEOTERRAINGRIDSAND A GEOLOCATION3 EXAMPLE
Thisis an example file that brings everything together. Multiple GeoTerrainGrids

are created and atank is driven across the grids which is automatically positioned on the

terrain and oriented to it. This program requires seventeen other files which are not

listed. However, the entire demo is posted on the SAVAGE web site. This program is an

excellent example of how current GeoVRML structures such as a

GeoPositionlnterpolator will work with the new nodes created in thisthesis. Thetank in

the program travels seamlessly through the GeoTerrainGrids in the scene.

#VRML V2.0 utf8

X3D-to-VRML- 97 XSL transl ation autogenerated by

X3dToVrm 97. xsl

#

http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3dToVrm 97
. Xsl

[X3D] VRML V3.0 utfs8

[head]

EXTERNPROTO CeoLocation3 |
field SFNode geoOrigin #NULL
field MFString geoSystem # "GDC']
field SFString geoCoords #
field M-Node chil dren #[]
field SFBool aut oEl evati on #FALSE
field SFBool aut oSurfaceOri entati on #FALSE
field SFBool debug #FALSE

eventln SFString set _geoCoords
event Qut SFString geoCoords_changed

eventln SFBool set aut oEl evati on

event Qut SFBool aut oEl evati on_changed

eventln SFBool set _autoSurfaceOrientation
event Qut SFBool aut oSurfaceOri entati on_changed

11

]

EXTERNPROTO GeoOrigin [
exposedField MString geoSystem # ["CDC']
exposedField SFString geoCoords # "
field SFBool rot at eYUp # FALSE

11

"GeolLocati on3. w | #GeoLocati on3"

110

"GeoVRML/ 1. 1/ prot os/ GeoOri gi n. w | #GeoOri gi n”
"../../GeoVRM./ 1. 1/ prot os/ GeoOri gi n. w | #GeoOri gi n"
"C./ Program

Fi | es/ GeoVRM./ 1. 1/ prot os/ GeoOri gi n. wr | #GeoOri gi n"
“file://1/C/Program

Fi | es/ GeoVRM./ 1. 1/ pr ot os/ GeoOri gi n. wr | #GeoOri gi n"
"urn: web3d: geovrni : 1. 0/ prot os/ GeoOri gi n. w | #GeoOri gi n*

"http://ww. geovrm .org/ 1.0/ protos/ GoOrigin wl#GoOigin"
]

EXTERNPROTO CGeoVi ewpoi nt |

field SFNode geoOrigin # NULL
field MFStri ng geoSystem # ["GDC']
field SFString position # "0 0 100000"
field SFRot ati on orientation #0010
exposedFi el d SFFl oat fiel dOView # 0.785398
exposedFi el d SFBool junp # TRUE
exposedField MString navType #

[" EXAM NE", " ANY"]
exposedFi el d SFBool headl i ght # TRUE
field SFString description # "
field SFFI oat speed # 1.0
eventln SFString set _position
eventln SFString set _orientation
eventln SFBool set bind
event Qut SFTi e bi ndTi e
event Qut SFBool i sBound

10
"GeoVRMWL/ 1. O/ pr ot os/ GeoVi ewpoi nt . w | #GeoVi ewpoi nt "

"../../GeoVRM./ 1. 0/ pr ot os/ GeoVi ewpoi nt. w | #GeoVi ewpoi nt "
"C./ Program

Fi | es/ GeoVRM./ 1. O/ pr ot os/ GeoVi ewpoi nt. wr | #GeoVi ewpoi nt "
“file:///C/Program

Fi | es/ GeoVRM./ 1. O/ pr ot os/ GeoVi ewpoi nt . wr | #GeoVi ewpoi nt "

“urn: web3d: geovrni : 1. 0/ pr ot os/ GeoVi ewpoi nt . wr | #GeoVi ewpoi nt

“http://ww. geovrm .org/ 1. 0/ protos/ GeoVi ewpoi nt. w | #GeoVi ew
poi nt"

]

EXTERNPROTO GeoPosi tionlnterpolator [
event I n SFFl oat set fraction
field SFNode geoOrigin

111

field MFString geoSystem

field MFFI oat key

field MFString keyVal ue

event Qut SFVec3f val ue_changed
event Qut SFString geoval ue_changed

11

" GeoVRMWL/ 1. O/ pr ot os/ GeoPosi ti onl nt er pol at or. w | #GeoPosi ti on
| nt er pol ator™

"../../GeoVRM/ 1. 0/ pr ot os/ GeoPosi ti onl nt er pol at or. w | #GeoPo
sitionlnterpolator”

"C./ Program
Fi | es/ GeoVRM./ 1. O/ pr ot os/ GeoPosi ti onl nt er pol at or. w | #GeoPos
i tionlnterpol ator”

“file:///C/Program
Fi | es/ GeoVRM./ 1. O/ pr ot os/ GeoPosi ti onl nt er pol at or. w | #GeoPos
i tionlnterpol ator”

"urn: web3d: geovrni : 1. 0/ pr ot os/ GeoPosi ti onl nt er pol at or. wr | #G
eoPosi tionl nterpol ator™

“http://ww. geovrm .org/ 1. 0/ prot os/ GeoPosi ti onl nterpol at or.
wr | #GeoPosi ti onl nt er pol ator”

]

[Scene]

Navi gationl nfo {
speed 5000

}
DEF CRIA@ N GeoOrigin {
geoCoords "29.0 52.0 0.0"

}

DEF Vi ewPoi nt CGeoVi ewpoi nt {
geoOrigin USE ORIA N
geoSystem ["GD' "WE']
orientation 1.0 0.0 0.0 -0.5
position "29.68 52.66 4000"

}
DEF Top Group {
children [
Inline {
url [

#'http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
i n/ N2942E5237DTED2. wr | "

112

"N2942E5237DTED2. wr | "
]
}
Inline {
url [

#'http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
i n/ N2942E5238DTED2. wr | "
"N2942E5238DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
i n/ N2942E5239DTED2. wr | "
"N2942E5239DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
i N/ N2942E5240DTED2. wr | "
"N2942E5240DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
i n/ N2943E5237DTED2. wr | "
"N2943E5237DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
i n/ N2943E5238DTED2. wr | "
"N2943E5238DTED2. wr | "

]

Inline {
url [

113

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
n/ N2943E5239DTED2. wr | "
"N2943E5239DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
n/ N2943E5240DTED2. wr | ™
"N2943E5240DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
n/ N2944E5237DTED2. wr | "
"N2944E5237DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
n/ N2944E5238DTED2. wr | ™
"N2944E5238DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
n/ N2944E5239DTED2. wr | "
"N2944E5239DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
n/ N2944E5240DTED2. wr | ™
"N2944E5240DTED2. wr | "
]
}

Inline {

114

url [

#'http://1ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
i n/ N2945E5237DTED2. wr | "
"N2945E5237DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
i n/ N2945E5238DTED2. wr | "
"N2945E5238DTED2. wr | "

]
}

Inline {
url [

#' http://1ocal host: 9090/ GEODATA/ DTED/ VRM./ N29E52/ Terr a
i n/ N2945E5239DTED2. wr | "
"N2945E5239DTED2. wr | "

]
}

Inline {
url [

#'http:/ /1 ocal host: 9090/ GEODATA/ DTED/ VRML/ N29E52/ Terr a
i n/ N2945E5240DTED2. wr | "
"N2945E5240DTED2. wr | "

]

}

DEF UNI TLOC GeolLocati on3 {
geoOrigin USE ORIG N
geoSystem ["CGD' "WE"]
geoCoor ds "29.7118644 52.6271186 0"
children [
Transform {
rotation 0.0 1.0 0.0 0. 7854
scal e 10.0 10.0 10.0
transl ation 0.0 15.0 0.0
children [
I nline {
url ["MAL. wr| "]
}

115

}
]
aut oEl evati on TRUE

aut oSurfaceOri entati on TRUE
debug TRUE

DEF | nterpol at or GeoPosi tionl nterpol ator {
geoOrigin USE ORIA N
geoSystem ["GD' "WE"]
key [0.0 0.99]
keyVval ue ["29.711865 52.62712 0.0" "29.762711 52. 677966
0.0"]
}

DEF d ock Ti neSensor {
cyclelnterval 100.0
| oop TRUE

}

ROUTE C ock. fracti on_changed TO

| nt er pol ator.set _fraction
ROUTE | nt er pol at or . geoval ue_changed TO
UNI TLCC. set _geoCoor ds

116

LIST OF REFERENCES

Ames, Andrea L., Nadeau, David R., and Mordland, John L., VRML 2.0
Sourcebook, Wiley, 1997.

Brutzman, Don, Scenario Authoring and Visualization for Advanced Graphical
Environments (SAVAGE Website), web.nps.navy.mil/~brutzman/Savage/contents.html.

Clynch, James R., “Coordinates,” Paper for Naval Postgraduate School, 2002.

Clynch, James R., “ Coordinates and Maps,”
[http://www.oc.nps.navy.mil/oc2902w/c_mtutor/index.html], March 2003.

Dahmann, Judith S., and others, “The DoD High Level Architecture: an Update,”
Proceedings of the 1998 Winter Simulation Conference, 1998.

Department of Defense, Performance Specification, MI1L-PRF-89020A,
Performance Specification Digital Terrain Elevation Data (DTED), 19 April 1996.

Duchaineau, Mark, and others, “ROAMing Terrain: Real-time Optimally
Adapting Meshes,” Los Alamos National Laboratory, 1999.

Dutch, Stever, “The Universal Transverse Mercator System,”
[www.uwgb.edu/dutchs/Fiel dM ethods/UTM System.htm], August 2003.

FM 3-25-26 Map Reading and Land Navigation, 20 July 2001
FM 3-34-230 Topographic Operations, August 2000.

Neushul, James D., “Interoperability, Data Control and Battlespace Visualization
Using XML, XSLT and X3D,” Naval Postgraduate School, September 2003.

Hunter, David., and others, Beginning XML, 2™ Edition, Wrox Press, 2001.

Lindstrom, P., and Pascucci, V., “Terrain Simplification Simplified: A Generd
Framework for View-Dependent Out-of-Core Visualization,” Lawrence Livermore
National Laboratory, 2002.

Polack, Trent, 3D Terrain Programming, Premier Press, 2003.

Serin, Ekrem, “Design and Test of the Cross-Format Schema Protocol (XFSP)
for Networked Virtual Environments,” Naval PostGraduate School, March 2003.

117

Shanmugan, B. and Pullen, J.M., “ Software Design for Implementation of the
Selectively Reliable Multicast protocol,” Proceedings of the IEEE Distributed Simulation
and Real Time Applications Workshop (DS-RT ’02), Dallas, TX, October 2002.

Tamas, Rajacsics, “Real -Time Visualization of Detailed Terrain,” Budapest,
2003.

Web 3D Consortium, GeoVRML Specification,
http://www.geovrml.org/geotransform/.

Web 3D Consortium, Specification Version 1.1, GeoVRML Specification, 14
July 2002.

Web 3D Consortium, Working Draft Specification, Extensible 3D Graphics
Specification, 1999.

Xj3D Open Source VRML/X3D Toolkit website,
[http://mww.web3d.org/ TaskGroups/source/xj 3d.html].

118

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Professor Don Brutzman
Naval Postgraduate School
Monterey, California

Major Nick Wittwer

Naval Postgraduate School
Monterey, California

119

