

MONTEREY, CALIFORNIA

THESIS

This thesis done in cooperation with the MOVES Institute

Approved for public release; distribution is unlimited

ALGORITHMIC APPROACHES TO FINDING COVER IN
THREE-DIMENSIONAL, VIRTUAL ENVIRONMENTS

by

David J. Morgan

September 2003

 Thesis Advisor: Christian J. Darken
 Second Reader: Joseph A. Sullivan

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Algorithmic Approaches to Finding Cover in Three-Dimensional, Virtual
Environments
6. AUTHOR(S)
Major David J. Morgan, U.S. Army

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In order for an agent to be credible in simulating a human opponent in a first-person combat simulation, it must

be able to find and use cover from direct fire weapons. The ability to find cover is fairly intuitive for humans, but current
attempts at replicating this ability in computer simulations and video games have been either simplistic or totally
missing. This thesis explores a range of algorithms which computer agents can use for finding cover from direct-fire
weapons in high-detail, dynamic, three-dimensional environments. The first method treats the enemy as a point light
source and uses binary space partition trees to create shadow volumes to find areas of cover. The second method
uses a depth-mapping technique to find potential areas where the agent could get behind cover. The third method uses
a sensor grid centered on the agent that allows it to check the area around it for cover locations. We implemented the
sensor grid technique inside of the first-person shooter computer game America’s Army: Operations as a proof of
concept.

15. NUMBER OF
PAGES

112

14. SUBJECT TERMS COVER, CONCEALMENT, AGENTS, REACTIVE AGENTS, VIRTUAL
ENVIRONMENTS, SIMULATION, ARMY GAME PROJECT, BINARY SPACE PARTITION
TREES, DEPTH MAPPING, SENSOR GRID

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ALGORITHMIC APPROACHES TO FINDING COVER IN THREE-
DIMENSIONAL, VIRTUAL ENVIRONMENTS

David J. Morgan

Major, United States Army
B.S., United States Military Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING, VIRTUAL ENVIRONMENTS AND
SIMULATIONS

from the

NAVAL POSTGRADUATE SCHOOL
September 2003

Author: Major David J. Morgan, U.S. Army

Approved by: Dr. Christian J. Darken

Thesis Advisor

Commander Joseph A. Sullivan, U.S. Navy
Second Reader/Co-Advisor

Dr. Rudolph P. Darken
MOVES Academic Committee Chair

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In order for an agent to be credible in simulating a human opponent in a

first-person combat simulation, it must be able to find and use cover from direct

fire weapons. The ability to find cover is fairly intuitive for humans, but current

attempts at replicating this ability in computer simulations and video games have

been either simplistic or totally missing. This thesis explores a range of

algorithms which computer agents can use for finding cover from direct-fire

weapons in high-detail, dynamic, three-dimensional environments. The first

method treats the enemy as a point light source and uses binary space partition

trees to create shadow volumes to find areas of cover. The second method uses

a depth-mapping technique to find potential areas where the agent could get

behind cover. The third method uses a sensor grid centered on the agent that

allows it to check the area around it for cover locations. We implemented the

sensor grid technique inside of the first-person shooter computer game

America’s Army: Operations as a proof of concept.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. THESIS STATEMENT.. 1
B. MOTIVATION... 1
C. THESIS ORGANIZATION.. 2

II. DESCRIPTION OF THE APPLICATION AREA ... 5
A. INTRODUCTION.. 5
B. COVER AND CONCEALMENT ... 5

1. Cover .. 5
2. Concealment .. 6
3. Cover Versus Concealment .. 6
4. Cover from Other Types of Weapons 7

C. HUMAN PERFORMANCE ... 7
1. How Humans Find Cover .. 7

a. Determine the Direction of the Threat 9
b. Determine Which Positions Provide Cover 9
c. Determine Which Positions Can Be Reached 10
d. Chose a Cover Position to Take 10
e. Move to the Cover Position.. 11

2. Taking Cover from Multiple Attackers 11
3. The Bottom Line .. 11

D. FINDING COVER IN COMPUTER SIMULATIONS 12
1. Checking Line of Sight.. 12
2. A Computer Agent’s View of the World 13
3. Penetration of Objects .. 15

III. RELATED WORK... 17
A. INTRODUCTION.. 17
B. MILITARY SIMULATIONS... 17

1. Terrain Annotation... 17
2. Terrain Cell Line of Sight .. 17

C. COMPUTER GAME AI... 18
1. Scripting and Channeling ... 18
2. Waypoint Annotation... 19

IV. CONCEPTUAL MODELS... 25
A. INTRODUCTION.. 25
B. ASSUMPTIONS ... 25

1. We are Only Concerned About Taking Cover from Direct
Fire .. 25

2. Any Object that Blocks Line of Sight Provides Cover........ 25
3. There is Only One Enemy ... 26

 viii

4. The Agent Taking Cover Knows the Location of the
Enemy... 27

5. The Agent Taking Cover Knows What the Enemy Can
See .. 27

6. The Agent Taking Cover has Perfect Knowledge of the
Area of Interest Around It.. 28

C. THEORY .. 29
D. BINARY SPACE PARTITION SHADOW VOLUME TREES.............. 29

1. Definition .. 29
a. BSP Trees .. 29
b. Shadow Volumes .. 31
c. BSP Shadow Volume Trees 32

2. Concept Applied to Finding Cover....................................... 33
3. Steps in the Algorithm .. 34
4. Benefits .. 34
5. Problems .. 35

E. DEPTH MAPPING.. 35
1. Definition .. 35
2. Concept Applied to Finding Cover....................................... 36
3. Steps in the Algorithm .. 38
4. Benefits .. 38
5. Problems .. 39

F. SENSOR GRID .. 39
1. Definition .. 39
2. Concept Applied to Finding Cover....................................... 40
3. Steps in the Algorithm .. 42
4. Benefits .. 42
5. Problems .. 43

V. IMPLEMENTATION OF THE SENSOR GRID MODEL................................ 45
A. INTRODUCTION.. 45
B. THE UNREAL ENGINE.. 45
C. THE ARMY GAME PROJECT ... 46
D. COVERBOT ... 46

1. General ... 46
2. Flow of Execution .. 47
3. Solutions to Problems... 48

a. Determining the Location of the Enemy 48
b. Building the Sensor Grid.. 48
c. Clamping the Sensor Grid to Ground Level 49
d. Determining if a Point is Standable 51
e. Finding Cover.. 51
f. Point-to-Point False Cover Results 52
g. Determining if a Point is Reachable 53
h. Deciding Where to Go... 54

4. Running the Demonstration.. 54

 ix

a. Loading the Environment... 54
b. Heads-Up Display.. 54
c. Controls ... 55
d. Consol Commands ... 55
e. Map of the Demonstration.. 56
f. CoverBot.. 56
g. CoverBotTwo... 57

VI. CODE.. 61
A. INTRODUCTION.. 61
B. FIREFLY.UC .. 61
C. NPC_COVERBOT.UC ... 62
D. COVERBOTCONTROLLER.UC .. 63
E. NPC_COVERBOTTWO.UC ... 75
F. COVERBOT2CONTROLLER.UC .. 76

VII. CONCLUSIONS AND FUTURE WORK ... 87
A. INTRODUCTION.. 87
B. CONCLUSIONS... 87

1. Shadow Volume Binary Space Partition Tree 87
2. Depth Mapping... 87
3. Sensor Grid .. 88
4. CoverBot... 88

b. Machine Performance... 88
c. Task Performance... 89

C. FUTURE WORK... 90

LIST OF REFERENCES.. 91

INITIAL DISTRIBUTION LIST ... 93

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Using Waypoints Can Miss Cover Locations...................................... 22
Figure 2. Waypoint Methods May Not Handle Dynamic Environments 23
Figure 3. BSP tree for a two-dimensional space.. 31
Figure 4. A Shadow Volume.. 32
Figure 5. Shadow Volume Created Using Forward-Facing Polygons................ 33
Figure 6. Shadow Volume Created Using Rear-Facing Polygons 34
Figure 7. Checking a Sensor Grid Element for Cover.. 37
Figure 8. Moving Cover Locations to Standable Positions 38
Figure 9. Problems with a Flat Horizontal Layer of Sensors.............................. 41
Figure 10. Sensor Grid Patterns .. 49
Figure 11. Clamping Sensors to Ground Level.. 50
Figure 12. Adjusting the Lower Boundary to Allow Small Drops.......................... 50
Figure 13. Determining Standability... 51
Figure 14. Determining Type of Cover with Sensors ... 52
Figure 15. Checking for False Cover Results .. 53
Figure 16. Checking if a Point is Reachable.. 53
Figure 17. Heads-Up Display Features ... 54
Figure 18. Map of the Demonstration Level... 56
Figure 19. CoverBot with Sensors Clamped to Ground Level 58
Figure 20. Sensors Showing Location Selected and Final Posture 58
Figure 21. CoverBot after Moving into Cover... 59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Keyboard and Mouse Commands. ... 55
Table 2. Consol Commands. .. 55

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

There several people that I must thank for their support of my efforts in

researching and writing this thesis:

First, and foremost, my wife, Mi, for putting up with the late nights, giving

up a lot of our time together and always encouraging me. Thanks for putting up

with me and still .

Chris Darken for being the one person besides me, who was excited

about this topic from the very beginning and who saw great potential in the

research. Thank you for all the great, thought-provoking discussions we had

about theory and implementation of these algorithms.

Rudy Darken for teaching great classes that provide excellent background

for this kind of research. Thank you for a great learning experience.

Joe Sullivan for providing great support and training simulations. Without

you life in the lab would not have been near as much fun.

Finally I’d like to thank Christian Buhl and Greg Paull, from the Army

Game Project, for answering a million and one questions about America’s Army:

Operations. Without their help, I’d still be searching through the code trying to

figure out how to make it work.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. THESIS STATEMENT
A range of algorithms exists that can be used to improve the current ability

of agents to find cover from direct fire in dynamic, three-dimensional, dynamic,

simulated environments.

Agents in current three-dimensional, dynamic, simulated environments

lack the ability to take cover from direct fire due to a lack of information about

their immediate surroundings. A range of algorithms exists that can provide an

agent with additional information about its surroundings, making it possible to

produce more realistic behavior.

B. MOTIVATION
The United States Military has and will continue to increase its use of

simulations to train its soldiers and to perform operations analysis. While

simulations cannot completely replace live training currently, they do offer some

significant benefits. Simulations are less expensive than live training overall

when all associated costs are included. Simulations are safer than live training,

especially in force-on-force situations where two live units actively fight each

other. Simulations do not have the environmental impact of live training.

Simulations also allow for training in a controlled environment where the

conditions of the exercise can be exactly controlled and repeated as many times

as it is necessary to reach the trainer’s goals. For these reasons and more, the

United States Military has turned to simulations in order to maintain the training

level of its units and soldiers.

In many cases, it is preferable to use computer-controlled agents to act as

the enemy forces in simulations rather than place them under the control of

another person. Many times the hardest part of a military task is coordinating

actions between units to get combined effects on the target. If you have two

units to train, computer-controlled agents can allow you to train them together

rather than opposing each other. This also allows you to run higher-level

2

scenarios. Instead of eight live simulators opposing eight live simulators, you

can have sixteen live simulators opposing sixteen computer-controlled agents.

This is a more effective use of simulation assets, which may be in high demand.

In order for computer-controlled agents to provide a positive training

effect, they must look and behave as closely as possible to their real-life

counterparts. If the behavior of the agent is significantly different from real-life,

the trainee, in essence, is training on a different task from the one that they are

supposed to learn. While there may be some cross-over in related skills, it is

unlikely that they will be able to reach full proficiency in the target task.

One of the areas where current computer-controlled agent behavior is

unrealistic is in the ability for them to take cover when fired upon by direct fire

weapons. The basic ability to hide and take cover is something that everyone

learns as they grow up. The military builds on this knowledge and trains its

soldiers even further how to find and use cover. It is an essential survival skill on

modern battlefields dominated by projectile weapons. However, in most current

simulations and games, the computer-controlled forces have only a simplified

understanding of cover or none at all. This leads to computer-controlled

opponents that stray out into the open making themselves easy targets. This

does not provide the trainee with the necessary tough, realistic training.

In order to provide effective training in computer simulations, the

computer-controlled agents should be able to find and take cover like a human

would in the same situation. We can do this through a variety of methods that

increase the agent’s knowledge of the world around him. That knowledge can

then be used to produce believable behaviors.

C. THESIS ORGANIZATION
The remainder of this thesis is organized as follows:

• Chapter II: Description of the Application Area. Detailed
description of cover and concealment, an overview of some of the
processes involved in how we find cover, and information on
computer processes useful in finding cover.

3

• Chapter III: Related Work. Some of the techniques currently
used in military simulations and computer games for finding cover.

• Chapter IV: Conceptual Models. Descriptions of the three
algorithms that we developed in order to provide an agent with
knowledge of cover around it. These are the Binary Space Partition
Shadow Volume Method, the Depth Mapping Method, and the
Sensor Grid Method.

• Chapter V: Implementation of the Sensor Grid Model. A
detailed description of how we implemented the Sensor Grid
Method in the computer game America’s Army: Operations.

• Chapter VI: Conclusions and Future Work. A discussion of
general conclusions of all the methods we researched and
suggestions for future research to improve them.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. DESCRIPTION OF THE APPLICATION AREA

A. INTRODUCTION
This chapter provides a description of some of the issues that are

important when developing cover algorithms for use in computer simulations.

First we must understand what cover is and how it is different from concealment.

Second, we look at human performance issues related to the issue of how we

are able to find cover in real life. Finally, we must consider the tools available in

computer simulations to help our agents find cover and the limitations of these

tools.

B. COVER AND CONCEALMENT
1. Cover
Cover is a physical object that can prevent a weapon system from causing

damage to you by deflecting or absorbing its energy [8]. Common examples of

real-life cover from direct-fire weapons include rocks, trees, earthen berms, and

solid walls. A good piece of cover should be large enough for you to get your

entire body behind and should be able to protect you from the weapon being fired

at you.

An object that provides cover for one weapon system may not provide

cover against another one. For example, a cinderblock wall provides good cover

from most small arms fire from rifles. However, it will provide no cover against

heavy machine guns that are able to fire right through it. In this case, the

cinderblock wall would only provide concealment. In order for cover to be

effective, it must be able to stand up to the force exerted on it by the weapon.

Interestingly enough, several feet of packed earth provides better

protection against bullets than rock does. When bullets strike a sufficiently large

amount of earth, their impact is absorbed and they stop. When bullets strike rock

they tend to ricochet and also fracture the rock sending small pieces of

secondary shrapnel flying all over the place. The ricochets and the flying pieces

6

of rock can wound you or other people near you. If hit with sufficient force, rock

can also crumble to the point where it provides no cover at all.

Cover is also direction dependant. As the position of the weapon system

changes the area of cover provided by an object also changes. Depending on

the shape of the object and the position of the weapon, the object may provide

no cover at all. If you take cover behind a log from someone firing at you from

the ground floor of a building, you may not have any cover if that person moves

up to the second or third floor where they can see over the log.

2. Concealment
Concealment is anything that has a negative impact on the ability of

someone to accurately target you with a weapon system by affecting their ability

to see you. Common examples of concealment are brush, tall grass, smoke, and

fog. These are all objects that you can place between you and a person firing at

you to keep them from accurately targeting you. Less common examples of

concealment are shadows and personal camouflage. In these cases, there is no

physical object between you and the person firing at you, but they can still

prevent the enemy from accurately targeting you.

3. Cover Versus Concealment
Cover and concealment are closely related to each other. The vast

majority of objects that provide cover will also provide concealment. Generally,

objects that are large enough and strong enough to stop a bullet will also prevent

the enemy from seeing you. However, the opposite is not generally true.

Objects that provide concealment do not always provide cover. It is a common

saying in the U.S. Army that “cover provides concealment, but concealment does

not provide cover”. This makes it very easy for most people to keep them

straight.

The only notable example that we were able to find of an object that

provides cover, but not concealment, is bulletproof glass. Bulletproof glass is

specifically designed to stop bullets and allow you to see through it. Even so, it

can only stop bullets up to a certain size and for only a certain number of shots

before it ceases to provide protection.

7

4. Cover from Other Types of Weapons
One important distinction in types of cover is the difference in cover from

direct-fire weapons and indirect-fire weapons. Direct-fire weapons are generally

designed to cause damage by directly striking the target. Their energy travels

over a relatively flat and narrow trajectory. Examples of direct-fire weapons are

rifles and lasers. In order to take cover from this type of weapon, you want to

place the object providing you cover between you and the person firing at you.

This is different for indirect-fire weapons and area-effect weapons.

Indirect-fire weapons are those that do not follow a direct path to the

target. They generally travel in a high, arching trajectory that takes them over

intervening objects to attack the target from above. Examples of common

indirect-fire weapons are artillery shells, mortars, and bombs. In order to take

cover from indirect-fire you need to put the cover-producing object between you

and the flight path of the indirect-fire weapon. This is what the military calls

“overhead cover”.

Since indirect-fire weapons usually have a very low chance of directly

hitting their targets, they generally have explosives in them that let them cause

damage over an area. In order to take cover against area-effect weapons, the

position of the enemy is not as important as where round lands. This is where

the damage will be coming from. If a hand grenade lands behind you, you need

to have cover between you and the hand grenade, not between you and the

enemy that threw it. In many cases with indirect-fire weapons, you will know that

you are under attack, but not know where the round will land. In this case, your

best bet is to find a location that provides cover from the largest number of

probable landing spots.

C. HUMAN PERFORMANCE
1. How Humans Find Cover
In order to program an agent to find cover, we first had to look at how

humans find cover. Unfortunately, there is not a lot of existing research in this

area. Even basic military training manuals assume that a person already has an

understanding of how to take cover. They only list several things that can

8

provide cover and tell you to protect yourself from enemy fire by using cover. In

order to determine how humans actually find cover, we relied on our experience

in the military and common sense.

A person wishing to take cover generally follows these steps:

• Determine where the threat is coming from.
• Look for objects or features that may provide cover from the threat.
• Determine if these locations can be reached.
• Choose a place to take cover.
• Move to that location.

Due to the parallel nature of brain processes, these steps do not have to

execute sequentially. In fact, they may not always occur in this order and at

times, some of the steps may be left out. What we are attempting to list here are

the minimum, necessary, logical steps to find a complete solution to the cover

problem. There may be shorter and quicker solutions, such as simply dropping

to the ground, but they will not guarantee that you are in cover, if cover is

available.

The steps listed above may seem like a lot to think about when your life

may be in danger, but humans seem to be able to do it all in a fraction of a

second. In addition, there may be a significant amount of preprocessing going

on when a person knows that they are in a dangerous situation where they may

need to take cover.

As we move around, we continuously create a mental model of the area

around us. This is why we can do things like back up without looking behind us

or walk up stairs without looking at our feet for every step. We use our mental

model of the surroundings to plan our interaction with the environment. This

mental model is not as high resolution as a deliberate scan and interpretation of

the area, but it allows us to take quick action when necessary.

Experienced infantrymen also tend to plan their use of cover ahead of

time. While out of direct combat with the enemy, they will note good locations to

take cover as they move along. When moving while in direct combat with the

9

enemy, they will plan short moves where they limit their exposure before taking

cover at a new location.

a. Determine the Direction of the Threat
In order to make the most effective use of cover you must know the

direction that the threat is coming from. If you directly observe the threat, then

this is very easy. If you do not directly observe the threat, then you must analyze

secondary factors to determine the most likely position of the enemy. Some of

these factors include: sound, impact of rounds, and previous intelligence on

possible enemy locations. In the absence of any information at all on the

direction of the threat, we tend to pick the piece of cover that offers the best

protection from the widest area. Another option in this situation is to move back

to the area where we came from under the assumption that we must have just

come into view prompting the enemy to fire.

b. Determine Which Positions Provide Cover
Once the position of the threat has been determined, you must

determine which objects provide cover from that threat. There are actually two

steps in this process, determining the area of cover offered by the object and

determining if the object provides cover or concealment. There is no clear

evidence of the any order for these two steps.

Determining the area of cover offered by the object involves mental

simulation. Through mental simulation, you project lines from the threat location

to the object. These lines allow you to determine the area on the far side of the

object from the threat where there will be cover. Fortunately, humans are fairly

adept at doing this type of mental simulation [14]. It has been an important

survival mechanism for us to be able to keep a three-dimensional map of our

surroundings in our heads. In military terms, this is sometimes referred to as

“situational awareness”. It is an understanding of the area around you, your

position in that area, and the potential things that can affect you in that area.

Determining whether an object offers cover or concealment against

a threat is a matter of learning and experience. You must make a quick

judgment about the composition of the object to determine if it is sufficient to stop

10

the threat. During military basic training when recruits first learn to take cover,

they often make poor choices. They correctly move themselves out of line of

sight from the threat, but they try to take cover behind objects that provide little or

no real protection. After becoming more familiar with the capabilities of different

weapon systems, they are much more adept at quickly determining good cover

locations.

c. Determine Which Positions Can Be Reached
Once you have determined which positions provide cover, you must

determine which ones are reachable and how long it will take to reach them. A

cover position that you cannot reach or takes too long to reach will not be useful.

d. Chose a Cover Position to Take
In order to choose the best cover position, you must consider many

factors. You will have to make this decision very quickly and under extreme

duress. Your life may well depend on it.

You must consider the quality of cover provided by the object or

feature providing cover. You must determine if the object is sufficient to stop the

threat from which you are taking cover.

You must consider the size of the area of cover provided by the

object. A larger area provides you more maneuverability and is easier to get

behind. A larger area decreases the chance that you try to take cover and find

that you cannot fit yourself completely inside the area. The ability to move within

the currently covered area also means that you have more room to adjust if the

threat changes position.

A good cover location will also have a good egress route. A good

egress route provides you with a way to move out of the immediate area with

continuous cover from the threat. Taking cover behind an object without a good

egress route will can leave you pinned down in that position and unable to move

without taking serious damage. When this happens, the enemy is often able to

move to another position where the object provides you no cover at all.

11

You must consider how long it will take you to reach the cover

location. You want to minimize the amount of time that you expose yourself to

the threat. Often this is a simple matter of distance to the location. However,

difficult terrain can slow your movement and have a huge impact on the time it

takes to reach the position. A good cover location must be quickly reachable.

e. Move to the Cover Position
The last step in taking cover is to move to the cover location you

chose. The key here is to minimize your exposure to enemy fire. Sometimes

this means you should move as quickly as possible. Sometimes this means you

need to drop to the ground and crawl into the cover. The situation will dictate

which method you should use.

2. Taking Cover from Multiple Attackers
In most of the situations we have described above, we have talked about

taking cover from one threat. However, it is a more common situation in combat

that you will be facing multiple threats at the same time. These threats may be

all in the same direction or in several directions. One solution is to analyze the

cover from each threat and find the intersection of these locations. While this will

provide you with the best answer, the computational expense could be

enormous. A better solution may be to analyze the cover from the threats that

are on the far ends of the group. We believe that this a reasonable approach

whenever all of the threats are in the same general direction, but we can give no

guarantee that it will work in all cases.

3. The Bottom Line
In the end, a good choice made quickly is often better than the perfect

choice that takes too long. There is no way to accurately estimate the amount of

time between your perception of the threat and when it is able to effectively

engage you. With modern weapon systems, the life expectancy of a fully

exposed target is very short. The only prudent course of action is to assume that

you have no time available and make the initial decision as quickly as possible.

After you make your initial decision and you have some cover, you can take the

time to look for better locations.

12

D. FINDING COVER IN COMPUTER SIMULATIONS
1. Checking Line of Sight
Most simulated environments have some sort of line of sight checking built

into the system. While we call it a “line of sight" check, we are actually

determining if a line drawn between any two points in the simulated environment

intersects anything. One of most common uses for this check is to determine if

one entity can see another one (thus the name), but programmers also use it in a

wide variety of applications including navigation and determining projectile impact

points.

The results returned by line-of-sight functions vary greatly from program to

program. It is important when designing your system to know all of the

information that it can provide and then use that to your advantage when

developing your cover algorithms. Some of the information returned may

include:

• True / False answer indicating if an object was intersected
• Coordinates to the point of intersection
• Surface normal of the point of intersection
• A reference to the object intersected

Some systems go even further and offer a set of functions that trade

information for speed: A fast trace that just returns “True” or “False”, a medium

speed trace that returns information on the first intersection, and a slow trace that

returns information on all intersections along the line segment.

Checking line of sight requires a significant amount of computational effort

on the part of the computer and programmers always try to minimize the use of

line of sight checks in real-time simulations. The process normally involves

several dot products, cross products, and comparisons for each polygon tested.

Programmers use various culling algorithms to limit the number of polygons in

the environment that are actually tested. However, typical environments can be

composed of several million of triangles, which can be difficult to process quickly.

One problem with most line of sight checks is that they do not accurately

determine if an object can be seen. The location of an object in an environment

13

is most often recorded as a three-number vector. If we check line of sight to this

location and the result says that we can see it, then we can definitely see the

specific point on the object. However, if the result says that the line of sight is

blocked, this does not necessarily mean that we cannot see another part of the

object. Other portions of the object may be plainly visible.

Additional line traces can increase the probability that the object is

completely out of sight, but this technique is still prone to error and may not be

computationally efficient. For example, you could use the four corners of a

bounding box around the object to perform additional checks. If all of the checks

say that line of sight is blocked, then you can be reasonably sure that the position

gives the object cover. Then you might have the opposite problem. The object

could be completely in cover, but a corner of the bounding box sticking out in the

open. In this case, the function would report that line of sight existed to the

object, when it really does not. On top of this, you have just increased your

requirement for line of sight checks by five times; one for the location of the

object plus four more for the corners of the bounding box.

Even with all of their problems, line-of-sight checks provide a useful

approximation for determining if a threat can see a target. It may be the case

that the only way to make a more accurate system would be to implement some

form of a computer vision system. While line-of-sight checks are computationally

expensive, they are much less expensive than even primitive computer vision

systems. They key is to tune your system to get a good balance between

computational performance and task performance.

2. A Computer Agent’s View of the World
An agent views the world through a set of sensors. By combining this

information with internal logic, perception, and previous knowledge, it creates an

internal representation of the world. Generally, this is not a complete

representation of the world due to the amount of storage space required. It is

debatable what level of representation humans retain in their memories. Often

the agent processes the detailed information and keeps a summarized version

on hand. It only keeps enough information on hand to complete its task.

14

For an example of what information is available to a typical computer

game agent we will use the computer game Unreal Tournament [22]. The

computer agents that you compete against in the single player version of Unreal

Tournament are commonly called “Bots”. Unreal Bots are able to navigate

through their world and interact with it in all the same ways that players can. The

Bots provide challenging game-play for players and exhibit a range of behaviors

that are very similar in some ways to that of human players in multi-player

games.

The behavior of Unreal Bots is controlled by state code [21]. The code

that controls the Bot is separated into sections called states. Execution

continues inside of the current section until something happens that causes

execution to jump to another state. Some functions may be redefined inside of

certain states so that their execution becomes state-dependant. That is, the

current state of the Bot determines which version of the function is executed

when it is called. This produces behavior that depends on the current state of

the Bot as well as the actual stimulus that it receives.

The Bot starts in a default state that ensures everything is initialized

correctly and then proceeds into other states based on its goals, perceptions,

and state transition code. For example a Bot could start in a “Hunting” state

where it would travel around the map looking for players to fight. Once it sees a

player, it will decide whether it should attack the player or flee. If it decides to

attack, it will move to one of its “Attack” states and engage the player. If the

player runs away the Bot will chase them. If it takes too much damage, it may

decide that it needs to run away and it will enter a “Flee” state. In the “Flee” state

it will move away from a player and attempt to find objects that it can pick up to

heal itself. This seems like a robust set of behaviors, but the agent produces

these behaviors with a bare minimum of information about the actual

environment around it.

An Unreal Agent has no idea what the world around it actually looks like.

It has no information about the size or shape of the rooms. It does not know

15

anything about the vast majority of the objects in the environment. When it

needs something like a First Aid packet, ammunition, or a gun it queries the

game engine and stores the result.

Unreal Bots navigate through their world by using a waypoint graph.

Waypoints are placed throughout the environment by level designers. The

waypoints are connected by links that tell the system which waypoints can be

reached from which other waypoints. The links between waypoints are

directional. For two waypoints to be connected by a link, they must be within

direct line of sight of each other and a Bot must be able to travel directly between

them. The series of waypoints and the links between them form a navigational

graph that allows the Bot to move around the environment. However, the Bot

does not keep even this information internally. The game engine keeps track of

the actual waypoint graph. When the Bot wants to go somewhere, it sends a

request to the game engine, which in turn tells it which direction to move.

An Unreal Bot knows about the player through a reference. When a

player comes into line of sight of a Bot the game engine sends the Bot a

“seePlayer” message that includes a reference to the player. The Bot can then

use this reference to gather additional information about the player, such as their

position, health, and weapons they carry. The Bot does not retrieve any of this

information until it is needed. When the player moves out of line of sight the Bot

receives another message telling it that it can no longer see the player.

In order to take cover the Bot will need more information about the

environment.

3. Penetration of Objects
Most computer simulations do not accurately represent the penetration of

objects by projectiles. Most often whether an object stops weapons fire or not is

a True/False Boolean value stored somewhere with the object. In real life the

penetration of an object by a projectile is affected by a large number of factors

including the material the object is composed of, the thickness of the material,

16

the type of projectile, and the angle of incidence. Whether or not an object can

be penetrated by a weapon has a direct impact on the quality of cover it provides.

Different materials behave differently when struck by a projectile. Soft

materials may absorb the energy of the projectile, while hard materials may

reflect it. Some materials may deform when struck while others may not. A

brittle material may shatter when struck. These all can have an effect on the

resistance offered by the material and the effects of repeated shots against the

material.

The type of projectile has a major impact on whether or not it penetrates

an object. An object that stops regular bullets well may offer little protection

against armor piercing rounds that are designed to have greater penetration.

Against exotic weapons such as lasers, some materials may absorb the energy

while others offer no protection at all. Blast-effect weapons can be even more

problematic as their energy spreads over the entire surface of the object instead

of a discrete point.

Once you determine if a round penetrates an object or not, you still have

to determine what happens to the round. If the round does not penetrate the

object, it can either be absorbed or reflected. If it does penetrate the object then

its characteristics need to be modified to account for the energy lost during

penetration as well as any changes in its flight path. Since objects in the vast

majority of simulations are not actually solid, one method that has been

employed is to re-spawn the projectile. The original projectile is destroyed at the

front surface of the object and a new projectile is created on the far side of the

object with appropriately modified properties.

17

III. RELATED WORK

A. INTRODUCTION
This chapter discusses how military simulations and computer games

have commonly addressed the problem of finding cover. We also discuss some

of the limitations of their solutions and why we need a better solution.

B. MILITARY SIMULATIONS
1. Terrain Annotation
Many older military simulations calculated cover based on the terrain that

the target occupies. For example, a unit in a section of the map with woods

would have more cover than a unit that was in the open. There is no actual

attempt to draw line of sight, because elevation data is not included in the maps.

However, because these simulations aggregate individual combatants together

into units this makes sense. It is impossible to do detailed line of sight checks

when the simulation does not track the exact location of individual combatants.

As military simulations have developed, they have become more and

more detailed. A greater level of detail gives them the potential to be more

accurate and provide us with more information that is useful. Many of the current

military simulations use terrain elevation data and consider this when determining

line of sight. In these systems, the cover that a unit has is determined by a

combination of line of sight (as determined by the terrain elevation data) and the

type of terrain that the unit currently occupies.

At the far end of this ever-increasing level of detail are the agent-based

simulations. In these simulations, combatants are required to think for

themselves and react to their current surroundings. Units are modeled all the

way down to the individual. In order to accurately model how an individual

behaves on the battlefield, they will need to be able to take cover in highly

detailed environments.

2. Terrain Cell Line of Sight
An interesting modification of terrain annotation is based on line of sight to

the cells instead of just the underlying terrain. Horn and Baxter published a

18

paper describing their development of a tool that can be used to automatically

plan tank squadron assaults that uses this technique [13].

Their program preprocessed the map in order to find the cover locations.

The program samples the map data every 100 meters to form depth map of the

area of operations. The user, based on the best current intelligence on their

positions, assigns the enemy an area on the map. The user places the friendly

forces their initial positions and then the program analyzes the situation. Cover is

used in both directions during this process: it determines both what the enemy

cannot see and which positions provide good visibility of the enemy area.

The program determines the cover that each location provides by

calculating how much of the enemy area can draw line of sight to that location.

Only the terrain elevation data is taken into account; information on trees,

buildings, and other objects are not considered. Line of sight is drawn from each

location in the enemy area back to the location we are considering. The fewer

places that can draw line of sight to the location, the better the cover it provides.

While this is an effective method for determining cover, it does not suit the

purposes of this paper. At one measurement per 100 meters of map area, it is

too low detail for our use. Trees, building, and other detailed objects are also not

considered. Finally, this is not a “run-time” model. It is designed to preprocess

the map, not to calculate cover while the simulation is in progress. Processing

line of sight from every position on the map to every other position on the map is

very calculation intensive, which may make it undesirable for use in simulations

that have to function in real time.

C. COMPUTER GAME AI
1. Scripting and Channeling
Many of the methods used by computer game developers for making their

agents use cover could be collectively called “scripting and channeling”.

Scripting is when an agent is given a predefined set of actions to follow, like a

movie script. Forcing a player take a certain path through the level is called what

we call channeling.

19

Scripting and channeling are a form of preprocessing that is totally

dependent on the level designer’s ability to find cover. The steps vary, but in

general the level designer first plans what type of encounter, they wish to have.

Then they pick a location for the encounter in the level. The level designer then

places objects in the level that restrict the movement of the player into a channel

toward the location of the encounter. This determines the direction from which

the agents will need to take cover. The level designer can then find good cover

locations and write a script telling the agents how and when to use them.

Used together, scripting and channeling can make computer-controlled

agents appear to be very good at finding and using cover. In the computer game

Medal of Honor: Allied Assault by EA Games there are examples where

enemies fire around the corners of walls and even kick over tables to hide

behind. This makes them seem extremely capable of finding cover, but in

actuality, the situation is very tightly controlled. If you play the same level several

times you will be forced into the same situation and the agents will do the same

thing every time. It quickly becomes apparent that they are not really thinking

about the terrain.

While scripting and channeling work perfectly well in most games, they

completely fall apart in any large, unconstrained environment. In an

unconstrained, free-play environment it will be impossible to tell which direction

the enemy will be coming from so choosing cover locations becomes impossible.

Most computer game levels are also very small compared to any military

simulation. At some point it becomes too large for the level designer to consider

every locations’ cover value.

2. Waypoint Annotation
One of the most popular current approaches to solving almost any

problem dealing with interaction between the agent and its environment is to use

waypoints. Waypoint graphs were developed as a means of allowing the agents

to easily navigate through a level. A series of points are placed throughout the

map anywhere the agent may need to go. All the points are connected to the

points around them by links. In order to be linked, two points must have direct

20

line of sight to each other. Once this is done, instead of doing costly navigation

processing of the environment, the agents simply move around on the graph like

a car following a road.

Game developers use the waypoint graph for more than just navigation.

By storing additional information at the nodes on the waypoint graph, they can

preprocess the information and store it at the node. For instance, instead of

having an agent calculate if it can jump across a small gap during the game, you

can use waypoints to store the information. Determine where the agent can

make the jump and place a waypoints at the take off and landing points. Store

some additional information at the nodes that tells the agent it is supposed to

jump when it gets to the nodes. Now when the agent needs to find out if it can

make the jump, it queries the waypoint graph and the information is right there for

it.

Waypoints can also be used as sensor points to gather information about

the environment. The environment around them can be sampled and the

information stored with the waypoint. This information is then readily available

for the agent to use in deciding where to go. The waypoints can store a wide

variety of information including local lighting levels, accessibility, and line of sight.

When we attended the 2003 Game Developers Conference, we talked to

many game designers about the problem of finding cover. Every single one of

them that we talked to immediately proposed using waypoints as a solution to the

problem. In a way, this makes perfect sense. The use of waypoints is well

defined and easy to code. It also takes very little processing power during

execution, which is very important to maintain high frame rates. In this case, the

ability of the agent to find good cover locations becomes almost totally

dependent on the level designer’s ability to place the waypoints in logical

locations. Unfortunately, no matter how carefully the level designer chooses

points for cover, all points on the level may provide cover in some circumstance.

One very well developed example of using waypoints to find cover is a

paper by Van der Sterren about analyzing terrain to pick sniper locations [24].

21

Van der Sterren’s algorithm functions during execution and processes the

waypoint graph against ten separate criteria to determine the best current sniping

position. Cover is one of the considerations in choosing a waypoint as a sniping

position. Cover in Van der Sterren’s algorithm is calculated waypoint to

waypoint. A position is considered to provide cover if it has an adjacent waypoint

or waypoints that are out of line of sight from the waypoints in the target area.

This algorithm has two main benefits: it is fast and it is adaptable to the

current situation in the game. The algorithm is kept fast by minimizing the

number of necessary line traces. The set of all waypoints can be easily culled

down to a set of interest and line traces are minimized because they are only

done from waypoint to waypoint. The algorithm is able to adapt to the current

situation by executing during run-time.

Even though Van der Sterrne’s algorithm executes during run-time, it still

requires significant amounts of pre-computation. In the example that he

provides, he uses around 480 waypoints on a small level that appears to be less

than 500 meters square. A level designer must place each of these waypoints.

Because of this, the performance of the algorithm will be highly dependent on the

density of the waypoints and the quality of their placement.

One problem that waypoint-based cover algorithms have in dynamic

environments is that they are static. Checking the same location every time

means that they will not always offer the best solution. Consider Figure 1 below.

The circle represent waypoints and the dashed lines the graph between them. A

large object in the center of the room provides cover to everything on the other

side of it. This area of cover is represented by the cross-hatched area. If the

agent searches the waypoint graph it will find that there are two waypoints that

are in cover. I could choose either of these as places to move to and be in cover

from the threat. However, neither of them offers an optimal solution. The agent

can get into cover faster by moving directly to a point inside the cover that is not

part of the waypoint graph.

22

Figure 1. Using Waypoints Can Miss Cover Locations

Another problem with using waypoint graphs is that they cannot handle

dynamic terrain. The level designer positions the waypoints long before the

game begins. The placement of each waypoint is carefully considered, but there

is no way to anticipate changes that may occur in a dynamic environment. As

the terrain changes, cover opportunities may be missed.

Consider Figure 2 below. The left hand side shows the initial situation.

The agent has taken cover at the center waypoint based on line of sight checks

from the threat to the waypoints. The right had side shows the situation after an

explosion that has moved the large object. None of the waypoints are now in

cover and the object even blocks part of the waypoint graph. Even though cover

is still available, the agent is unable to find it by using the waypoint graph.

Cover

Cover

?
Cover

Threat

Agent

Large
Object

Cover

Cover

?
Cover

Threat

Agent

Large
Object

23

Figure 2. Waypoint Methods May Not Handle Dynamic Environments

Threat

Agent

Threat

Agent

?!?
Threat

Agent

Threat

Agent

?!?

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. CONCEPTUAL MODELS

A. INTRODUCTION
This chapter discusses the three conceptual models that we developed for

finding cover in dynamic, three-dimensional environments. The Binary Space

Partition Shadow Volume Tree method uses light-source shading methods to find

areas of cover. The Depth Mapping method uses a rough approximation of

computer vision techniques to find places where the agent can potentially take

cover. The Sensor Grid method places a series of sensors around the agent and

uses them to detect potential cover locations.

B. ASSUMPTIONS
We made the following assumptions in order to simplify the algorithms in

development. If needed it should be possible to modify any of the algorithms so

that any of these assumptions are no longer necessary.

1. We are Only Concerned About Taking Cover from Direct Fire
This assumption allows us to focus on one type of cover. Cover from

direct-fire weapons is the simplest case to analyze because we can assume that

the projectile travels along a straight line from the threat to the target.

We can add cover from indirect-fire weapons later by determining likely

impact points. Adding cover for area-of-effect type weapons will depend on the

behavior of the particular threat. Changes for cover from area-of-effect type

weapons could involve signification changes in the algorithms if the effects of the

weapon behave like a fluid. To accurately calculate the area of effect could

require complex calculations and could also depend on the geometry of the area

of detonation.

2. Any Object that Blocks Line of Sight Provides Cover
This assumption allows us to avoid analyzing material properties while

calculating cover locations. Material properties are often missing in many

simulations so this information would not be available. In some simulations, this

information may be stored at the object level. This would require a capability to

determine which object individual polygons belong to.

26

Even when an object does not provide cover, it may still provide

concealment. When cover is not available, concealment is better than nothing at

all. Therefore, while we are focusing on finding cover, this assumption still

provides reasonable behavior for our agent.

To design a system where we do not make this assumption requires that

we consider the penetration of objects and their value as concealment. Such a

system would need a line-of-sight algorithm that was able to return every

intersection along the weapon’s potential flight path. The line-of-sight algorithm

would also need to provide access to the material properties of the objects

intersected.

The decision logic for an agent in such a system would need to be much

more complicated also. In determining where to move, the agent would have to

weigh the value of cover verses concealment. It would need to be able to decide

between a close position that provides concealment verses a far position that

provides cover. It would also need to be able to determine if an object provides

enough cover to stop the threat the agent is facing.

A full system that can find both cover and concealment will most likely

require separate algorithms for cover and concealment. Cover and concealment

are fundamentally different in that concealment does not require an intervening

object. Since concealment involves anything that hinders the enemy’s ability to

see the agent, it involves as much signal detection theory as it does line of sight

algorithms. Most cover algorithms will not be able to handle cases where you

can take concealment by “hiding in plain sight” (e.g. in shadows or through

camouflage where there are no intervening objects between the threat and the

target).

3. There is Only One Enemy
This assumption allows us to explore the simplest case where there is

only one threat. We need to be able to handle one enemy before being able to

handle multiple threats.

27

There are several ways that an algorithm could be implemented to

consider multiple threats. The most straightforward option is to calculate cover

for every threat individually and then combine the results. However, this option

can be very computationally expensive. Another option is take some subset of

the enemy and calculate cover based on their locations. This option is less

expensive computationally, but its performance is highly dependent on the actual

arrangement of the enemy forces. A good, general-purpose method of handling

an arbitrary number of threats from several different directions will require

significant effort to develop properly.

4. The Agent Taking Cover Knows the Location of the Enemy
This assumption allows us to focus on finding cover instead of determining

the agent’s perception of threats.

To develop an algorithm where the location of the enemy may not be

known requires modeling of the agent’s perception of the enemy’s location. If

there is any information at all the agent would have to be able to hypothesize the

location of the threat in order to decide where to take cover. If there is no

information at all, then the situation is almost reversed. In this case, the agent

will want to find the cover location that provides the best protection from the

widest area.

5. The Agent Taking Cover Knows What the Enemy Can See
This assumption reduces our computational complexity by avoiding

calculation of natural biases in human exocentric perception. Doing one

calculation with perfect knowledge at the beginning helps us avoid additional

processing requirements.

In order to implement a system with imperfect knowledge of what the

enemy can see we would need to model the natural biases in human exocentric

perception. In real life, we compensate for these biases by constant reevaluation

of the cover location as we move toward and into the position. Accurately

replicating this in an agent would greatly increase the computational cost of

running any cover algorithms.

28

6. The Agent Taking Cover has Perfect Knowledge of the Area of
Interest Around It

This assumption allows us to find cover without maintaining an internal

representation inside the agent of the surrounding area. This saves memory

space, the processing power that would be required to build the internal

representation, and the processing power for hypothesizing about areas where

the agent only has partial information.

To build an algorithm where the agent had imperfect knowledge of the

area of interest around it would require extensive sensor modeling, a detailed

internal representation of the surrounding area, an ability for the agent to

hypothesize about unseen areas, and a conflict-resolution capability.

The agent would need to be able to process detailed information on the

portions of the area that it had observed and build it into a detailed internal

representation. The cover calculations would then be run on the internal model

of the world instead of the actual environment. All of the algorithms presented in

this paper require detailed line of sight information. The only way to accurately

process the same information inside of the agent’s perception would require an

almost perfect copy of the environment down to the polygon level. The memory

requirements for this would be enormous.

The agent would also need to be able to hypothesize about areas that it

has not directly observed. Given that the agent sees a box on the floor from one

angle, it would need to be able to determine whether it thinks that the

unobserved side of the box would be a suitable cover location or not.

The agent would also need to have decision logic to deal with conflicts in

its internal representation and the actual environment. Continuing the example in

the paragraph above, suppose that the agent has decided to take cover behind

the box. It moves around the box to find that it cannot get behind the box for

some reason. The information that it based its decision on has now changed.

The agent must be able to deal with these situations.

29

C. THEORY
This section deals with the theory we developed for guiding the

development of our algorithms. When searching for cover in virtual

environments, we must ask three basic questions:

• Where is there cover?
• Where can I reach?
• Where can I stand?

Covered areas offer protection from direct fire. As stated in the

assumptions section we will consider any area that is out of direct line of sight

from the threat to provide cover.

Reachable areas are places that I can move to. Some path must exist

that the agent can use to reach the location. A cover location that we cannot

reach does us no good.

Standable areas are places where the slope of the terrain and the

composition of the surface material allow us to stand, kneel, or lay prone. This is

important because not all reachable areas are suitable as places where we can

stop and take cover. You might be able to get into a place behind cover by

jumping, but there may not be suitable surface there that allows you to remain in

that position.

What we are looking for is the intersection of these three areas: Covered

Reachable, and Standable. Since there are many methods currently available

for finding the Reachable and Standable areas, we have focused our algorithms

on finding Covered areas. However, each algorithm presented in the following

sections will detail any advantages or disadvantages that it offers in finding the

Reachable and Standable areas.

D. BINARY SPACE PARTITION SHADOW VOLUME TREES
1. Definition

a. BSP Trees
A Binary Space Partition tree (or BSP tree) is a hierarchical

subdivision of an n dimensional space into homogeneous regions [3]. Fuchs,

30

Kedem, and Naylor developed BSP trees in 1979-1980 as a way of determining

visibility priority in three-dimensional scenes [10][11]. Since then they have been

used for a variety of applications including collision detection, ray tracing

acceleration, partitioning of polygons into convex sub-polygons, and shadow

generation [3].

BSP Trees use n-1 dimensional shapes to partition an n

dimensional space into two convex subspaces. Each subspace can be

partitioned into two more subspaces until the scene is completely partitioned into

elemental, convex subspaces. All of the information about the partitioning is

stored in the structure of the binary tree. Each node contains information on the

n-1 dimensional shape used for the partitioning. Each node also has a front and

a back leaf. The binary structure of the tree allows for efficient traversal and

quick information retrieval.

The BSP tree is built by adding elements from the scene one at a

time and placing them into the tree appropriately. There are four cases that each

element can fall in: in front, behind, coincident, and spanning. Consider the

case of a two-dimensional area with objects A, B, C, D, and E as shown in Figure

3. The two-dimensional space is partitioned into subspaces by one-dimensional

lines. The tree is started by picking a root node which in this case is A. A line is

created through A partitioning the space into two sub-spaces. One side of the

partition is chosen to be the in-front area (marked by a + sign) and the other is

the behind area (marked by a – sign). The original information on A is stored

inside the A node. We add B next and find that it B falls in the positive subspace

of A. B gets added as a positive leaf node to A. Object C is in the negative

region of A so it is added as a negative leaf node of A. When Object D is added,

we find that it is coincident with object B, so its information is stored in the same

node where object B’s information is stored. When object E is added we find that

it spans the partition created by C. E is split along the partition into E1 and E2.

E1 is added as C’s positive child and E2 is added as C’s negative child. We

have now partitioned the entire space into convex subspaces.

31

Figure 3. BSP tree for a two-dimensional space.

When used in computer graphics BSP trees are very useful for

displaying static images. We can use a back-to-front, painters algorithm or a

front-to-back, scanline algorithm to render the view. All of the visibility

information can be quickly extracted by traversing the BSP tree. Once we build

the tree, the camera can be moved freely without rebuilding the tree; it only

requires that the tree be traversed in a different order.

BSP trees have also been developed for use in dynamic scenes

with moving objects. As objects move, their nodes are removed from the tree

and reinserted. Since the tree does not have to be completely rebuilt for each

render, performance is greatly improved. Normally all of the objects in the scene

are classified as static or dynamic. The tree is built with the static objects first

and then the dynamic objects are add last. Adding the dynamic objects last puts

them in the leaf nodes of the BSP tree, which minimizes costly internal changes

to the tree structure.

b. Shadow Volumes
A shadow volume is a semi-infinite volume that denotes an area

that is blocked from a light source [16]. Objects that are inside this area are in

shadow. Objects that are outside this area are not. A shadow volume is

enclosed by shadow planes, which are formed by using the edge vertices of a

A

B

C

D

E1 E2

+
-

+

+

+ +

-

-

- -

+

+ -

-

A

B,D C

E1 E2

A

B

C

D

E1 E2

+
-

+

+

+ +

-

-

- -

+

+ -

-

A

B,D C

E1 E2

+

+ -

-

A

B,D C

E1 E2

32

polygon and a point light source. The direction of the normal of the shadow

plane determines which side of the plane is in shadow or out of shadow. To

create the shadow volume for a polygon, we create a shadow plane for each

edge of a polygon and then top it off with a plane through the polygon itself.

Figure 4 shows an example of a shadow volume.

Figure 4. A Shadow Volume

c. BSP Shadow Volume Trees
Chin and Feiner introduced Shadow Volume Binary Space Partition

Trees (or SVBSP Trees) as a means of computing shadows from point light

sources in static scenes [6]. SVBSP trees use the structure of the BSP tree to

create a merged shadow volume for the scene. When each polygon is added to

the SVBSP tree the subspace is partitioned along the edges and in the plane of

the polygon to create the shadow volume for that polygon. In their algorithm,

Chin and Feiner imposed a strict, front to back insertion of the polygons so that

the faces of all polygons in the SVBSP tree were guaranteed to be lit. As more

polygons are added, the merged shadow volume evolves. Due to the special

nature of BSP trees, the camera can be moved around the scene without having

to recomputed the scene.

Since their introduction, there have been many improvements to

the basic BSP tree and SVBSP algorithms. Chin and Feiner have developed

Point Light Source

Shadow Volume

Point Light Source

Shadow Volume

33

methods to deal with multiple light sources as well as area light sources that

generate realistic umbra and penumbra regions [5]. Chrysanthou and Slater

developed a method for building unordered SVBSP trees that can handle

dynamic environments [7]. Their method allows for the transformation of objects

in the scene without entirely rebuilding the SVBSP tree.

2. Concept Applied to Finding Cover
If we treat the threat as a point light source, then areas that are “in

shadow” can be considered to be in cover. Create a SVBSP tree of the scene

using the threat as a point or area light source. The merged shadow volume of

the SVBSP tree shows all of the areas where cover may be found.

One important modification of the standard SVBSP tree algorithm is to

build it only using rear-facing polygons. Normally the SVBSP tree algorithm only

considers polygons that are facing the light source. Rear facing polygons are not

visible and cannot be lit so they are culled early in the process. If we use the

forward facing polygons in building our SVBSP trees, many of the shadow areas

will be inside of objects (see Figure 5 below). Since we cannot move there, it

does us no good to consider these areas as cover.

Figure 5. Shadow Volume Created Using Forward-Facing Polygons

By only using the rear-facing polygons, we eliminate the inside of solid

objects from our shadow volume (see Figure 6 below). This has the potential to

increase our greatly efficiency when attempting to find a point in cover.

Threat

Shadow
Volume

Area that cannot be used
as cover inside shadow volume

Solid
Object

Threat

Shadow
Volume

Area that cannot be used
as cover inside shadow volume

Solid
Object

34

Figure 6. Shadow Volume Created Using Rear-Facing Polygons

3. Steps in the Algorithm
Our algorithm for finding cover using SVBSP trees has the following steps:

• Determine the location of the threat.
• Create a view frustrum from the threat, centered on your location,

which is large enough to encompass the area where you want to
find cover.

• Build the SVBSP tree using all of the polygons in the scene graph
culling those that are outside of the view frustrum and those that
are forward facing.

• Find the intersection of the shadow volume and the standable
surfaces.

• Determine which surfaces in this area are reachable.
• Choose a reachable point and move there.

4. Benefits
Using SVBSP trees to find cover has two main benefits: it finds areas of

cover and it uses no approximations in finding cover.

By finding areas of cover instead of cover points, it gives the agent more

complete information about its surroundings. The agent can plan movement

routes that stay inside of the covered area. The agent can also identify broken

areas of cover and large uniform areas of cover, which could be part of its

decision criteria in choosing an exact destination for its move.

SVBSP tree use no approximations when determining cover. Since it

uses the exact polygon model for the scene and mathematical equations for the

Threat

Shadow
Volume

Area inside the object
eliminated from shadow volume

Solid
Object

Threat

Shadow
Volume

Area inside the object
eliminated from shadow volume

Solid
Object

35

shadow planes there are no approximations that need to be made when

determining the areas that are out of line of sight from the threat.

5. Problems
BSP trees require a large amount of computational power and may be too

slow for some applications. According to the BSP Tree Frequently Asked

Questions section of the OpenGL website, complexity (time and space) for BSP

trees is O(n2) upper bound and O(n) expected for n polygons [3]. With the ever-

increasing polygon counts in three-dimensional environments, the processing

power may not be available to make the SVBSP tree algorithm feasible for use in

real-time applications.

Another problem with the SVBSP tree method for finding cover is that it

can be very difficult to determine if your agent will fit behind a piece of cover and

be totally hidden. If a model uses lots of large polygons the shadow volumes will

also be large and your agent can fit entirely inside of one. However, say you

have a rock which has 100 rearward facing polygons from the threats location.

Each polygon will create its own shadow volume. None of them alone may be

large enough for your agent to fit in, but collectively they provide plenty of room.

There must be some method for handling this situation.

While we have listed finding areas of cover as a benefit for this method, it

can also be a problem when trying to find a movement destination for the agent.

An area defined by several planes essentially has an infinite number of locations

inside. Choose any two points inside the area and you can produce a point in

between them. So you must develop a method for choosing a single point as a

destination inside of the cover area once it is computed.

E. DEPTH MAPPING
1. Definition
Depth Mapping is a means of representing n dimensional data in an n-1

dimensional form. Each element in the n-1 dimensional format holds the data on

the nth dimension. As the name implies, this is normally depth or distance

information. For example a depth map of a three dimensional scene from a

specific viewpoint would be a two dimensional grid with numbers in each square

36

representing the distance from the viewpoint to the first object struck in that

square.

2. Concept Applied to Finding Cover
Depth mapping is similar to computer vision techniques in that it

transforms the scene into a numerical representation of what the threat can see

and processes the information. It produces a reduced-detail resolution

approximation of the depth of objects in the scene from the threat’s point of view.

We must then process the information stored in the depth buffer to find cover in

the scene.

Depth mapping creates a layer of information on the scene. This is very

similar to shadow mapping in that only the information on the closest object to

the threat is stored in each cell of the grid. There is no information on the objects

that lay behind this point. In fact, depth maps have recently been proposed as a

method of creating shadow volumes.

The depth map is built by constructing a two-dimensional grid at some

virtual location between the threat and the target. A line is traced from the

threat’s eye position through the center of each cell on the grid. The distance to

the first object encountered is stored as the value for the cell. If the trace does

not encounter any objects, then some null value is stored.

Building the depth map with rear-facing polygons provides the same

benefits as it did with SVBSP trees. We want to find things that we can get

behind, not inside. Only considering rear-facing polygons in the area of interest

can eliminate some points inside solid objects from consideration.

Once we build the depth map, we can use templates of our agent to

determine where there is cover. The templates tell us how many cells our agent

covers on the depth map for a certain posture at a certain distance. So for

instance, we may have one template that tells us that our agent appears to be

one cell wide and two cells tall at 120 meters while standing. Another template

would tell us that our agent appears to be three cells wide and five cells tall at a

distance of 30 meters while standing. We must build one set of templates for

37

each posture that our agent is capable of assuming (i.e. standing, kneeling, and

prone).

In order to find all cover locations we must check every cell in our depth

map against the templates for each posture. Starting with the furthest template,

check its distance against the distance of the cell. If the distance stored in the

cell is less than the distance for the template, then we check all of the other cells

covered by the template. If all of these cells are also closer than the distance to

the template, then we have cover at that location for that posture and distance.

The next step is to check each of the closer templates until we find the closest

template of that stance that allows us to be in cover. The initial locations of our

cover positions can be computed using a vector to the bottom center of each

element and the distance stored there. (See Figure 7)

Figure 7. Checking a Sensor Grid Element for Cover

After we have determined the cover positions for the sensor grid, we must

determine if there is a corresponding covered place we can stand. Due to the

way that we have constructed the sensor grid so far, it is entirely possible that the

locations we have stored are actually floating in the air or under the surface of

Closest cover for this element is at a distance of 250.

100

100

1st Check = Cover

100

100

2nd Check = Cover

100

100

3rd Check = No Cover

175 60 120
Templates to be checked

Closest cover for this element is at a distance of 250.

100

100

1st Check = Cover

100

100

2nd Check = Cover

100

100

3rd Check = No Cover

100

100

1st Check = Cover

100

100

100

100

100

100

1st Check = Cover

100

100

2nd Check = Cover

100

100

100

100

100

100

2nd Check = Cover

100

100

3rd Check = No Cover

100

100

100

100

100

100

3rd Check = No Cover

175 60 120
Templates to be checked
175 60 120175175 6060 120120
Templates to be checked

38

the terrain. Since we have stored the closest possible cover position, we can

trace a line from the threat’s eye position, through the bottom of the sensor grid

element until it hits the terrain. If a standable position exists along this line, we

move our initial cover locations back to this point. (See Figure 8)

Figure 8. Moving Cover Locations to Standable Positions

After iterating over all squares in the depth map with all postures, we will

have a list of points that are in cover, and on a standable surface. Each position

in the list will also have a posture associated with it. From this point, we can

determine which points are reachable and which point we want to move to.

3. Steps in the Algorithm
Our algorithm for finding cover using depth mapping has the following

steps:

• Determine the location of the threat.
• Build the depth map for the scene from the threat’s point of view.
• For each element in the depth map find the closest prone, kneeling,

and standing template that is completely covered.
• For each prone, kneeling and standing position identified so far,

move the point away from the threat till it rests on standable terrain.
Discard any points where standable terrain does not exist.

• Test the remaining points and discard any that are not reachable.
• Choose one of the remaining points and move there.

4. Benefits
One benefit of the Depth Mapping method is that you do not have to

perform any separate checks to determine if you will fit inside the area of cover.

Up in the Air

Initial Cover
LocationThreat

Final Cover
Location

Depth Map

Up in the Air

Initial Cover
LocationThreat

Final Cover
Location

Depth Map

39

Because of the way we processed the depth map information we are guaranteed

to fit in the cover at that point or some other point further away.

Another benefit is that Depth Mapping also gives you a definite location to

move to. Even though this point may not be navigable, we know that we can

search for navigable points along the line away from the threat and still remain in

cover.

Depth mapping has no problems with objects made of large numbers of

polygons. Since only one check is made in each area, the number of polygons in

the scene have do not affect the functioning of the algorithm.

5. Problems
Depth maps are approximations of the surface area of the cover. As such

they give you very little information about anything behind the surface. There

may be many objects that are stacked close enough together that you cannot

move there, but the Depth Map does not provide you with any additional

information about it. The hardest part of this algorithm will be determining if the

area behind the front of edge of the depth map provides enough room for you to

navigate.

Depth maps are less computationally expensive than the shadow volume

method, but still very expensive. The actual expense for performing the

algorithm will depend on the size of the grid and the efficiency of the line of sight

algorithm. As the number of points in the horizontal and vertical planes

increases linearly, the number of points that must be tested and calculated over

the whole grid increase exponentially. Increasing the number of points to be

tested also increases the number of templates that must be stored for testing.

F. SENSOR GRID
1. Definition
A sensor grid is a group of objects that are used to gather information

about the surrounding area. The types of information that the sensors gather

depends on the type of sensor and the information available from the

environment. The sensors are arranged in some pattern, or grid, that gives them

40

systematic coverage of the area of interest. Often this pattern is some sort of

even spacing, but it can also be modified so that there is a higher density of

coverage in areas where more detailed information is necessary.

2. Concept Applied to Finding Cover
A sensor grid can be used to sample the area around an agent to find

cover in its environment. When the agent needs to find cover, it deploys the grid

and uses the sensors to gather information on cover locations. It can then use

this information to choose a cover location and then move to that sensor’s

location.

The sensors used in this method can be very simple. At the most basic

level all that the sensor needs to be is a location in space. We can determine if a

sensor is in cover if we do a line of sight check between the threat and the

location of the sensor. If the line of sight check is blocked, then we can assume

that the location offers cover. Additional information that might be useful to store

in the sensor would be if the location is over standable terrain and the posture

that the agent will need to take to benefit from the cover.

The deployment and arrangement of the sensor grid can have a large

effect on the number of sensors required to cover an area and the quality of the

results returned by the algorithm. While it is perfectly possible to arrange the

sensors in a grid that uniformly covers an area around the agent in the x, y, and z

directions, it is not necessary. Under most conditions, the vast majority of the

movement of the agent will be in horizontal directions. Ground is generally flat

and we tend to think about ground movement in horizontal planes. Our elevation

is a matter of gravity holding us to the current ground level. We can take

advantage of this in the development of our sensor grid pattern.

One horizontal layer of sensors, clamped to ground level, can reduce the

number of required sensors while still finding cover around the agent. If the

sensor grid extends both in the horizontal and vertical directions with no regard to

ground level, a lot of them will provide meaningless information. Sensors that

are too far above ground level will be testing points up in the air that we cannot

41

reach. Sensors that are below ground level will also be in unreachable positions.

(See Figure 9 below) Eliminating these sensors greatly reduces the number of

checks that the algorithm must perform when they are not likely to produce useful

results anyway.

Figure 9. Problems with a Flat Horizontal Layer of Sensors

We must carefully consider the arrangement of the sensors in the

horizontal plane of the sensor grid to ensure that it produces good results. The

first thing that we must determine is how large of an area we want the sensor grid

to cover. It should be large enough that all cover locations within a reasonable

distance are considered. The second item we must consider is the density of the

sensor locations; that is how close together we want them. If the sensors are too

far apart, they will not detect cover opportunities. If the sensors are too close

together, the number of sensors can grow so large that the algorithm is too slow

for real-time operation. There must be a balance between resolution and speed.

The last item that we must consider is whether the sensors have an even spread.

Spreading the sensors in an uneven fashion will leave gaps in coverage and

some valid cover locations will not be considered.

When testing a sensor location for cover there are four cases that we must

consider: no cover, cover while prone, cover while kneeling, cover while

standing. This assumes that all three of these postures are available to the

agent. The easiest way to determine which case applies to the sensor’s location

is to start from the ground up. Since almost all objects that provide cover are on

the ground (or are the ground itself) it makes sense to start there. There are also

some situations where a person’s leg may be exposed, but their upper bodies

In the air
Agent

Underground

In the air
Agent

Underground

42

are in cover. Checking from the ground up allows us to quickly label places with

no cover and stop checking. If that location has some cover, then we can do a

more detailed examination of the location to determine which posture is the

highest we can maintain and still be in cover.

3. Steps in the Algorithm
Our algorithm for finding cover with a sensor grid has the following steps:

• Determine the location of the threat.
• Create the sensor grid in the predetermined pattern.
• Clamp the sensors to ground level.
• Determine which sensors are on standable terrain.
• Test line of sight to the sensors and classify them.
• Of the sensors that are in cover and on standable terrain,

determine which ones are reachable.
• Choose a sensor that is in cover, on standable terrain, and

reachable as your destination.
• Move to that sensor’s location.

4. Benefits
Of all the algorithms presented so far, the sensor grid is the most

computationally efficient. As the polygon count of the scene increases, the

algorithm the only thing that affects the speed of the algorithm is the efficiency of

the line of sight algorithms that it depends on. It handles objects made of single

polygons or millions of polygons just as efficiently. The biggest impact on the

speed of the algorithm is the number of sensors used. As the number of sensors

increases, the number of line of sight checks for finding cover only increases

linearly.

The Sensor Grid algorithm gives you half of a navigation solution before

you even begin to calculate which points are reachable. Since algorithm already

requires us to clamp the sensors ground level in a regular pattern, we can use

them as temporary waypoints. This allows us to efficiently navigate around

objects into cover locations.

The Sensor Grid considers all of the area around the agent equally. The

other two algorithms we have considered create a “cover surface” where

43

anything that is behind it is in cover. This algorithm can deal with objects placed

one behind the other in arbitrarily complicated scenes.

5. Problems
The Sensor Grid method conducts a low detail sampling of the area. As

such it may miss some cover opportunities. Points that are in between two of the

sensor may provide good cover, but will never be considered.

The Sensor Grid method is prone to false reporting in situations with large

numbers of small objects. This is because the line of sight checks are conducted

from point to point, not point to area. It may be the case that an object is large

enough and in the right position to block the line of sight check while other parts

of the target are clearly visible.

The Sensor Grid method reports the insides of objects as valid cover

locations. Since the cover determination is based purely on line of sight, the

insides of solid objects will be reported as providing cover. It is not until we

attempt to navigate to these locations that we find that they cannot be reached.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

V. IMPLEMENTATION OF THE SENSOR GRID MODEL

A. INTRODUCTION
This chapter describes our implementation of the sensor grid model inside

of the computer game America’s Army: Operations (AAO). AAO is based on the

Unreal Engine so the first section gives some background on it and what it has to

offer as a three-dimensional virtual environment. The second section describes

the Army Game Project and some of the modifications that they have made to

the Unreal Engine. The last section details how we built an agent in AAO that

uses the sensor grid method to find cover.

B. THE UNREAL ENGINE
Tim Sweeney, the founder of Epic Games, developed the Unreal Engine.

He began research in 1994 and published the engine in 1998 [21]. His design

goals were to allow developers to create true three-dimensional environments

and to enable programmers to control and customize all aspects of the

environment and characters. The game engine has been constantly improved

over the last five years and is one of the best of its kind. It is not only featured in

the Unreal series of games, but has also been licensed by many other

companies to use in their games.

Programming in the Unreal Engine is written in accomplished through the

use of UnrealScript and C++. It supports full four-way function calling between

C++ and UnrealScript, so developers can freely mix code between the two.

While Unrealscript runs many times slower than C++ code in the game, it is more

simple to use in some cases. UnrealScript looks like a cross between Java and

C++ with some additional added features. Two important capabilities of

UnrealScript for agent programming are state-based execution and time-based

execution. Agents behaviors are controlled by their current state and changes in

state. Time-based execution allows the modeling of actions that take a certain

amount of real-life time to complete, without constantly checking to see if it is

complete.

46

The Unreal Engine is an idea environment for exploring agent-based

research. It provides a highly detailed three-dimensional environment with

realistic physics. It has built-in support for artificial intelligence programming.

C. THE ARMY GAME PROJECT
The Army Game Project is an attempt by the U.S. Army to allow civilians

to learn about the Army through a computer game called “America’s Army:

Operations” [1]. The Assistant Secretary of the Army for Manpower and Reserve

Affairs selected the Modeling Virtual Environments and Simulation (MOVES)

Institute at the Naval Post Graduate School to develop the game. Development

began in January 2000 and it was first published in July 2002. Since then over

1.67 million people have downloaded the software for free. Users have played

over 130 million missions logging a staggering 13 million hours of game play.

America’s Army: Operations (AAO) has many features that made it our

first choice for this research. AAO is based on the Unreal Engine, which is easy

to learn and provides a rich, detailed three-dimensional environment. Since the

MOVES program developed the game, we had easy access to the code and

many people with significant experience with Unreal programming experience.

One of the most significant reasons for using AA:O is that the computer-

controlled agents can go prone. Many of the games published today do not have

this feature. In fact, the base Unreal Engine itself does not support the ability for

people to go prone. We feel that the ability to go prone is an essential part of

making realistic use of cover, so it was essential that our development

environment supported this ability.

We used version 1.6 of America’s Army: Operations for all of our

research.

D. COVERBOT
1. General
CoverBot is our implementation of the sensor grid method of finding cover

inside of America’s Army: Operations. There are two versions of CoverBot: a

step-by-step version called CoverBot and a full-speed version called

47

CoverBotTwo. CoverBot stops after each major step of the algorithm to allow

verification of its results. CoverBotTwo executes without any stops to allow us to

see it run at full speed.

2. Flow of Execution
Both of the CoverBots have essentially the same flow of execution. The

only real difference is that the sensor grid for the step-by-step version is

deployed immediately while the agent is in the waiting state. This makes it easier

to test the Bot because we can see where the sensors are that it will be using.

Both of the CoverBots start in a standing position and go into a waiting

state. We use the “takeDamage” message from the game engine to trigger the

agents to advance through each phase of the algorithm. The game engine

sends this message to the agent each time we shoot it so we can use our rifle to

control the flow of the algorithm inside the simulation.

The next step is for the agent to create the sensor grid. The agent

determines the placement of each sensor based on a pattern centered on the its

current location. When the initial position of each sensor is determined, the

agent attempts to clamp the sensor to the terrain at that position. If it is

successful, it also checks if the terrain at that location is standable. If there is a

standable surface at that location, the agent creates a sensor there.

After the agent places all of the sensors in the pattern, it determines which

of them are in cover. For each sensor, the agent checks line of sight to three

different positions. The agent moves the sensor from ground level to the prone

height of the agent, to the kneeling height, to the standing height. At each height

it checks the line of sight between the enemy and the sensor’s location. The

agent then picks one of four cover categories for the sensor’s location: no cover,

cover while prone, cover while kneeling, or cover while standing.

After the agent has categorized the cover at all of the sensor locations, it

tries to determine the shortest path to any of the points that have cover. For

each sensor in cover, the agent checks to see if there is a straight-line path to the

sensor’s location. If no direct path exists, it checks to see if it can reach the

48

cover location by traveling through any of the other sensor locations first.

Essentially, it is using the other sensors as waypoints for a two-part path to the

cover location.

The agent selects a movement destination, by finding the shortest path

into a sensor position that provides cover. If a valid path is found, then agent

moves to that position and then changes its posture based on how the cover was

classified for that location. The agent always remains at the tallest posture that it

can assume in that location and still be in cover.

Once the agent reaches cover, we can reset it by shooting it again. The

agent will stand up and prepare itself to deploy the sensor grid again.

3. Solutions to Problems
The following paragraphs provide additional details on how we

implemented various parts of the algorithm.

a. Determining the Location of the Enemy
We give CoverBot the exact location of the enemy. The

“takeDamage” message that is used to control the flow of the algorithm also

passes the agent a reference to us (as its enemy). From this it can determine

where our eye’s are and uses this location for determining line of sight to the

sensors. The agent assumes that we stay in the position where we initially shot it

from while it was in the waiting state. This allows us to move around to better

viewpoints during execution.

b. Building the Sensor Grid
We found that offset rings of sensors provide excellent coverage of

the area searched for cover. A traditional grid formation would place the sensors

equidistant from each other over a square area. (See Figure 10, left side)

However if we place the sensors in equidistant rings around the agent with each

ring containing the same number of sensors we get a variable density coverage

of the area. The density of sensor points is highest close to the agent and lowers

further away from it. (See Figure 10, center) However, this variable density is

actually productive to the algorithm. It allows the agent to make a more detailed

check nearby for cover while still considering points that are further away. This

49

seems to parallel parts of the human cover-finding process. We give more

consideration to nearby locations than those that are further away because we

can reach the nearby locations faster. Finally looking at the rings of sensor

locations, we see that it does not give us very even coverage of the area. Large

gaps in coverage have developed between rows of sensors as you travel

outward from the center of the rings. By simply offsetting the rotation of every

other ring by half the angle between adjacent sensors of the same ring, we can

even out our coverage and still maintain a pattern that is denser on the inside

than the outside.

Figure 10. Sensor Grid Patterns

c. Clamping the Sensor Grid to Ground Level
We developed the following method for clamping our sensors to

ground level. First, the sensors were deployed in a horizontal plane from the foot

level of the agent. A trace was done directly down from each sensor to

determine if the surface of the terrain was below the horizontal plane. If this

check failed to produce a surface, a second check was performed from above

ground level down to the horizontal plane to find a surface. If no surface was

detected by either check then a sensor was not created. (See Figure 11 below)

The reason that we check was split into two parts is that if you only do one check

from top to bottom, there is a tendency for the points to be clamped to the tops of

buildings and other objects. Checking from ground level down first also gives the

agent a tendency to go downhill which is common when taking cover because it

is easier to move downhill.

Standard Grid
Uniform Spacing

(49 Points)

Circular Grid
Uniform Rings

(51 Points)

Circular Grid
Uniform, Offset Rings

(51 Points)

Standard Grid
Uniform Spacing

(49 Points)

Standard Grid
Uniform Spacing

(49 Points)

Circular Grid
Uniform Rings

(51 Points)

Circular Grid
Uniform Rings

(51 Points)

Circular Grid
Uniform, Offset Rings

(51 Points)

Circular Grid
Uniform, Offset Rings

(51 Points)

50

Figure 11. Clamping Sensors to Ground Level

Lines that extend upwards and downwards from the agent at 45-

degree angles limit the length of the two traces. This keeps the sensors from

being placed at a distance that was too far up or down for the agent to be able to

reasonably navigate to. We do not want our agent jumping off cliffs to take cover

or trying to climb up areas that are too steep to climb. However, the agent

should be able to make reasonable small jumps down, so we modified the lower

boundary line to allow it to jump down up to its own height. (See Figure 12

below)

Figure 12. Adjusting the Lower Boundary to Allow Small Drops

1st

Check

2nd

Check

1st

Check
1st

Check

2nd

Check

1st

Check

51

While clamping the sensors to ground level, we should also

determine if the surface is standable or not. We are already tracing a line to the

surface while clamping so the information about whether or not the surface is

standable should be readily available. If the surface is not standable, then we

can remove the sensor from consideration as a cover location and save some

computation cycles.

d. Determining if a Point is Standable
In order to determine if a point was standable, we checked to see if

it had a slope of less than 45 degrees. The trace function that we used in

clamping the points to ground level returns the surface normal of the first polygon

it intersects. The surface normal has a length of one. At a slope of 0 degrees

the z component of the surface normal is equal to one. At a slope of 45 degrees

the z component of the surface normal is equal to the square root of two. So if

the Z component of the surface normal is greater than the square root of two, we

consider the surface to be standable. (See Figure 13 below)

Figure 13. Determining Standability

e. Finding Cover
We check for cover by moving the sensor to the appropriate height

above ground level and checking for line of sight. Start with the prone height for

the agent and check if the sensor has line of sight. If line of sight exists, then

there is no cover. If line of sight does not exist, the continue checking the next

highest stance, until the line of sight check is clear or there is no line of sight to

S
ur

fa
ce

 N
or

m
al

45o

Z = 1
Z = 2

S
ur

fa
ce

 N
or

m
al

45o

Z = 1
Z = 2 Z = 2

52

the sensor at standing height. If the line of sight was clear to any sensor height,

then the next lowest stance is the tallest stance that the agent can take at that

location and still have cover. If line of sight is blocked even in the standing

position, then the agent can take any posture at that location and still be in cover.

Figure 14 below summarizes this procedure in pseudo code.

Figure 14. Determining Type of Cover with Sensors

f. Point-to-Point False Cover Results
Since we are checking line of sight from one point to another point,

small objects and the edges of objects can appear to provide cover when they do

not. This is because the point to point check does not take into account the area

that the agent will occupy when it moves to that location. We avoided this

problem by doing additional checks for locations that initially reported cover. We

performed two more checks to points that we moved to the left and the right of

the sensor by the collision radius of the agent. Since the collision cylinder for the

agent is slightly larger than the actual polygon model for the object, this provides

us with a conservative estimate of positions that will provide cover.

If (LOS to PRONE)
then NO_COVER;

Else if (LOS to CROUCHING)
then PRONE_COVER;

Else if (LOS to STANDING)
then CROUCH_COVER;

Else STANDING_COVER;
PRONE

CROUCHING

STANDING
Threat Agent If (LOS to PRONE)

then NO_COVER;
Else if (LOS to CROUCHING)

then PRONE_COVER;
Else if (LOS to STANDING)

then CROUCH_COVER;
Else STANDING_COVER;

PRONE

CROUCHING

STANDING
Threat Agent

53

Figure 15. Checking for False Cover Results

g. Determining if a Point is Reachable
We considered a point reachable if a direct path or a path that went

through one other sensor could reach it. We used two functions to determine if a

point was reachable from another point. The first function, “pointReachable”, is

native to the Unreal Engine. It returns a Boolean value that tells you if the agent

can move from its current location directly to a specified location in a straight line.

However, this function cannot does not work if the starting point is not the agent’s

current location. To determine if the destination point could be reached from

another sensor’s location we used a volumetric line of sight check. This function

determines if an upright cylinder that moves from one point to another intersects

any objects.

Figure 16. Checking if a Point is Reachable

Threat Agent

Small Object Small Object

Threat Agent

Line of sight only
appears to be blocked.

Checking the edges shows
this to be a bad spot.

Threat Agent

Small Object Small Object

Threat Agent

Line of sight only
appears to be blocked.

Checking the edges shows
this to be a bad spot.

Point Directly Reachable Point Reachable Through
Another Sensor

Point Directly Reachable Point Reachable Through
Another Sensor

54

h. Deciding Where to Go
Instead of implementing complicated decision logic about where the

agent should take cover, we decided to go with a simple, effect solution. Our

agent goes to the closest point in cover that it can reach.

4. Running the Demonstration
a. Loading the Environment
On the CD you will find a directory named “/FireTeam”. Copy this

directory directly to your hard drive. Once this is complete change to the

“/system” directory and run the file called “ArmyOps.exe”. This starts the game.

Once the menu screen is displayed, hit the “~” key to open a

command prompt. To load the demonstration level, type “open test” at the

command prompt. Once the level has loaded you will need to type “class r” to

give yourself a rifle and unlock your movement controls.

b. Heads-Up Display

Figure 17. Heads-Up Display Features

55

c. Controls
Use the following commands to navigate through and interact with

the environment:

ACTION KEY
Move Forward W
Move Back S
Move Left A
Move Right D
Run Ctrl
Jump Spacebar
Look Left / Right / Up / Down Move Mouse
Go From Standing or Prone to Kneeling C
Go From Kneeling to Standing C
Go From Standing or Kneeling to Prone X
Go From Prone to Standing X
Bring up Weapon Sights Z
Fire Weapon Left Mouse Button
Reload Weapon R
Fix Jam F
Open / Close the Command Consol ~
Toggle Between Main Menu and Demonstration ESC

Table 1. Keyboard and Mouse Commands.

d. Consol Commands
Use the following commands at the command prompt in the consol:

ACTION COMMAND
Unlock Movement playerlock 0
Change Player Class to Rifleman class r
Give the Player Unlimited Ammo mpcheat params ammo true
End the Demonstration quit
Load the Demonstration load test
Render Scene in Normal Mode rmode 5
Render scene with polygons only rmode 1

Table 2. Consol Commands.

56

e. Map of the Demonstration
The figure below shows a map of the demonstration area. This is

not a map of the entire level. The Coverbots have been placed in a variety of

locations so that its abilities can be tested. The compass in the lower left corner

of the map shows where North is on the map.

Figure 18. Map of the Demonstration Level

f. CoverBot
CoverBot is a step-by-step implementation of the sensor grid

algorithm. It starts in a waiting state with its sensor grid already deployed and

clamped to the ground. The sensors appear as glowing balls of light that we call

FireFlys. The trigger for making CoverBot execute the next step of the algorithm

is to shoot him with your rifle.

The first time that you shoot CoverBot, he uses the sensor grid to

find cover and plans a path to the shortest point in cover. He uses your location

P

1

2

5
3

4

Building

Fuel Truck
Truck

Rocks on
Hillside

Walls and
Crates

Truck

P = Player starting position 3 = CoverBot
1 = CoverBot 4 = CoverBot
2 = CoverBot 5 = CoverBot2

Not to Scale

N

S

EW

P

1

2

5
3

4

Building

Fuel Truck
Truck

Rocks on
Hillside

Walls and
Crates

Truck

P = Player starting position 3 = CoverBot
1 = CoverBot 4 = CoverBot
2 = CoverBot 5 = CoverBot2

Not to Scale

N

S

N

S

EW EW

57

from this first shot throughout the rest of the process until he resets. This allows

you to move around him and see what is going on.

When CoverBot checks the sensor grid for line of sight the FireFlys,

he makes the ones that are in your line of sight invisible. The FireFlys that are in

cover are moved to a height that indicates whether that position provides cover

prone, kneeling, or standing. The Firefly that is at the location where the

CoverBot has decided to take cover is made six times larger than the others. If

the CoverBot needs to go through one of the other FireFlys to get to that location

it is made three times larger than the others and is shown regardless of whether

or not it is in cover.

The second time that you shoot the CoverBot, it moves to the cover

location that it decided on in the last step. It then assumes the posture

necessary to have cover.

Shooting the CoverBot a third time resets it. It stands back up in its

current position and redeploys its sensor grid.

g. CoverBotTwo
CoverBotTwo is a full speed version of CoverBot. Its sensor grid is not

initially deployed and it does not use any FireFlys to show the location of its

sensors. The first time you shoot CoverBotTwo, it immediately moves into cover

and assumes the required posture. Shooting it a second time resets it.

58

Figure 19. CoverBot with Sensors Clamped to Ground Level

Figure 20. Sensors Showing Location Selected and Final Posture

59

Figure 21. CoverBot after Moving into Cover

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

VI. CODE

A. INTRODUCTION
This chapter includes all of the code that we used in our implementation of

the sensor grid method of finding cover in the America’s Army: Operation. All of

the code is written in UnrealScript. Firefly.uc

B. FIREFLY.UC

/* ==
 * Filename: FireFly.uc
 * Date: 19 SEP 2003
 * Author: MAJ David J. Morgan, U.S. Army
 * ==
 * This displays a glowing ball of light in the level that does not
 * block anything.
 * ==
 */
class FireFly extends Light
 placeable;

defaultproperties
{
 bstatic=False
 bNoDelete=False
 bMovable=True
 bHidden=False
 bBlockBulletTraces=False
 bBlockNonZeroExtentTraces=False
 bBlockZeroExtentTraces=False
 Texture=Texture'T2-FX.Corona.fx2_cor_05'
 Style=STY_Translucent
}

62

C. NPC_COVERBOT.UC

/* ==
 * Filename: NPC_CoverBot.uc
 * Date: 19 SEP 2003
 * Author: MAJ David J. Morgan, U.S. Army
 * ==
 * This class tells the engine which skins and what controller to use
 * for the bot.
 * ==
 */
class NPC_CoverBot extends AGP_Character
 placeable;

function TakeDamage(int Damage, Pawn InstigatedBy, Vector HitLocation,
 Vector Momentum, class<DamageType> DamageType,
 optional BoneInfo Bone,
 optional Controller KillerController)
{
 Controller.TakeDamage(Damage, InstigatedBy, HitLocation, Momentum,
 DamageType, Bone, KillerController);
}

defaultproperties
{

 Skins[0]=Texture'T-Characters.Soldier.Soldier_PANTS_Tiger_Opfor'
 Skins[1]=Texture'T-Characters.Soldier.Soldier_SHIRT_Tiger_Opfor'
 Skins[2]=Texture'T-Characters.Soldier.Soldier_HAND_Blk_Gloves_1p'
 Skins[3]=Texture'T-Characters.Soldier.Soldier_FACE_Opfor_008'

 Mesh=Mesh'Soldier_3PMesh'

 bStaticSkinsAndMeshes = true;

 ControllerClass=class'AGP.CoverBotController'
}

63

D. COVERBOTCONTROLLER.UC

/* ==
 * Filename: CoverBot2controller.uc
 * Date: 19 SEP 2003
 * Author: MAJ David J. Morgan, U.S. Army
 * ==
 * Base AI for CoverBots with step-by-step execution. The bot
starts
 * in a waiting state. Glowing balls called "FireFlys" are used to
 * indicate the position of the sensors in the sensor grid. The
 * trigger for the bot to change states is the takeDamage function.
 * The first time the bot takes damage it searches the sensor grid for
 * cover locations and path into cover. The sensors that are not in
 * cover are made invisible. The sensors that are in cover are moved
 * to the height of the highest posture that the bot can assume at
 * that location and still be in cover. The FireFly for the sensor
 * that the bot has chosen as its destination is made very large and
 * if an intermediate sensor is needed to get there, it is made medium
 * sized. When the bot takes damage a second time it moves to the
 * cover location that it chose initially and assumes the correct
 * posture. When it takes damage a third time it resets itself into
 * the waiting state.
 * ==
 */

class CoverBotController extends AgentController;

/************************/
/* VARIABLES */
/************************/
var Color red, green, blue, purple; // Colors for messages
var int displayTime; // Display time messages
var FireFly fireFly[51]; // need (num_rings * num_points) + 1
var int num_rings; // number of rings of FireFlys
var int num_points; // number of FireFlys per ring
var int num_fireFlys; // number of FireFlys actually created
var float distance_between_rings;
var Actor midpoint, endpoint; // path to the point in cover
var bool foundCover, foundPath;
var int middle, end; // used for navigation

var enum CoverType
{
 Standing,
 Crouching,
 Prone,
 NoCover
} cover[51]; // need (num_rings * num_points) + 1 of these
// there is a 1-to-1 correspondence between the index of the cover and
// the sensor

64

/************************/
/* PREGAMEPLAY */
/************************/
function PreBeginPlay()
{
 Super.PreBeginPlay();
}

function BeginPlay()
{
 Super.BeginPlay();
}

function PostBeginPlay()
{
 Super.PostBeginPlay();
}

/***
* This method does some initialization of some variables when the
* CoverBot is created.
**/
function Possess(Pawn aPawn)
{
 Super.Possess(aPawn);

 // set colors for printing messages to the console
 red.R = 255; red.G = 0; red.B = 0; red.A = 255;
 green.R = 0; green.G = 255; green.B = 0; green.A = 255;
 blue.R = 0; blue.G = 0; blue.B = 255; blue.A = 255;
 purple.R = 255; purple.G = 0; purple.B = 255; purple.A = 255;

 // set time for messages to be displayed in the console
 displayTime = 20;
}

/***
* This is a utility method that makes it easier to print console
* messages to the screen.
* param message the text message to display
* param textColor the text color to display the message in
* returns nothing
**/
function PrintToConsole(String message, Color textColor)
{
 Level.GetClientController().Player.Console.Message(message,
 displayTime,textColor);
}

65

/***
* This function builds the sensor grid. The sensors (FireFlys) are
* placed in their initial positions and clamped to ground level.
* param none
* returns none
**/
function CreateSensorGrid()
{
 local int i, j; // counters
 local rotator r; // direction to current point
 local float distance; // distance to the current ring
 local vector fireFlyLocation;
 local float elevation;

 // set the initital positions for all of the FireFlys
 distance = 0;

 // build one FireFly at my feet
 fireFly[0] = Spawn(class'FireFly', Pawn, ,
 Pawn.Location-MakeVect(0,0,Pawn.CollisionHeight-2),
 Pawn.Rotation);
 fireFly[0].SetDrawScale(0.1); // makes them small
 fireFly[0].LifeSpan = 0; // makes them permenant
 num_fireFlys = 1;

 // build the rest of the FireFlys in the grid
 for (i=0; i<num_rings; i++) // builds each ring
 {
 // set rotation to straight forward relative to Pawn
 r = rotation;
 // stagger the odd numbered rings
 if (i%2==1)
 r.yaw = r.yaw + (65500/num_points)/2;
 distance = distance + distance_between_rings;
 // place FireFlys for the current ring
 for (j=0; j<num_points; j++)
 {
 // find direction to next Firefly
 r.yaw = r.yaw + 65500/num_points;
 // move it out
 fireFlyLocation = Pawn.Location + distance*vector(r);
 // set it on the ground
 fireFlyLocation.z -= Pawn.collisionHeight;

 // don't make a FireFly unless there is something for it
 // to stand on
 if (clampSensorToGround(FireFlyLocation, distance,
 elevation))
 {
 fireFlyLocation.z = elevation;
 fireFly[num_FireFlys] = Spawn(class'FireFly', Pawn, ,
 FireFlyLocation, Pawn.Rotation);
 // make them small
 fireFly[num_FireFlys].SetDrawScale(0.1);
 // make them permenant
 fireFly[num_FireFlys].LifeSpan = 0;
 num_fireFlys++;

66

 }
 }
 }
} // End function createSensorGrid()

/***
* This function clamps a sensor to ground level and tests if the
* surface is standable. If no surface exists or the surface is
* not standable the function returns false to indicate that a
* sensor should not be created.
* param ffLocation starting location for the sensor
* param distanceFromPawn how far the sensor is from the Agent
* param elevation the final elevation of the sensor
* returns true if a sensor should be created at the passed location
**/
function bool ClampSensorToGround(vector ffLocation,
 float distanceFromPawn,
 out float elevation)
{
 local vector hitLocation; // required by the trace funtion
 local vector hitNormal; // required by the trace funtion
 local float verticalDistance, pawnHeight;
 local vector verticalVector;
 local Actor hitActor;

 // create a vector that can be used to determine where a line is
 // that extends from the agent at a 45 degree above and below the
 // horizontal plane. 0.785398163397 is 45 degrees in radians
 verticalDistance = distanceFromPawn*Tan(0.785398163397);
 verticalVector = MakeVect(0,0,verticalDistance);

 // have to use default collision height, current may be different
 PawnHeight = 2*Pawn.default.CollisionHeight;

 hitActor = None;

 // First Check: Trace from the Sensor's Location down to the line
 if (verticalDistance < PawnHeight) // allow drops up to it's Height
 hitActor = Pawn.Trace(hitLocation, hitNormal,
 ffLocation-MakeVect(0,0,PawnHeight),
 ffLocation);
 else
 hitActor = Pawn.Trace(hitLocation, hitNormal,
 ffLocation-verticalVector,
 ffLocation);

 // If nothing was hit
 // Second Check: Trace from upper bound down
 if (hitActor == None)
 hitActor = Pawn.Trace(hitLocation, hitNormal,
 ffLocation-vect(0,0,1),
 ffLocation+verticalVector);

67

 // If still haven't hit anything
 if (hitActor == None)
 return false;
 else
 {
 // check if the agent can stand on the surface
 if (Standable(HitNormal))
 {
 // The 2 is needed to make the FireFlys visible
 elevation = HitLocation.z+2;
 return true;
 }
 else
 return false;
 }
} // End function ClampSensorToGround

/***
* This function determines if the agent can stand on the surface.
* param normal the surface normal
* returns true if the surface is flat enough for the bot to stand.
**/
function bool Standable(vector normal)
{
 // normal is a unit vector (length of 1), if the z component
 // of the normal is > 0.7071 then the surface has a slope
 // of less than 45 degrees
 if (normal.z>0.7071)
 return True;
 else
 return False;
} // End function Standable

/***
* This function determines if there is line of sight from the threat
* to the target.
* param threat location of the threat
* param target location of the target
* param radius the radius of the target
* returns true if there is line of sight to the location of target
* or points radius units to the left or right of the target
**/
function bool CanBeSeen(vector threat, vector target, float radius)
{
 local vector AtoB; // a vector from the threat to the target
 local vector sideStep; // vector used to find points to the sides
 local rotator r;

 if (FastTrace(threat, target))
 {
 // Line of sight to center of target, return True
 return True;
 }
 else // Check points to the left and right
 {

68

 AtoB = target - threat;
 r = Rotator(AtoB);
 // Unreal has 65500 units in a circle

 // this turns the vector 90 degrees
 r.yaw = r.yaw + 65500/4;

 // Create a unit vector in the direction of r
 sideStep = Vector(r);

 // widen the sidestep to radius
 sideStep = sideStep * radius;

 if (FastTrace(threat, target+sideStep) ||
 FastTrace(threat,target-sideStep))
 {
 // if either of these can be seen then return True
 return True;
 }
 else
 {
 return False;
 }
 }
} // end function CanBeSeen

/***
* This function determines if any of the sensors in the grid are in
* cover. If they are in cover, it determines the tallest posture
* that the agent can assume in that position. The results are stored
* in the cover array. All sensors are reset to waist level for the
* agent to aid in navigation in the next step.
* param none
* returns true if cover was found
**/
function bool FindCover()
{
 local int i; // counter
 local vector enemyEyes; // the location of the threat's viewpoint
 local bool result; // true if cover found

 result = false;

 enemyEyes = Enemy.EyePosition();
 for (i=0; i<num_FireFlys; i++)
 {
 // Check if there is cover, then set the height of the FireFlys
 // appropriately
 if (CanBeSeen(enemyEyes,
 FireFly[i].Location+MakeVect(0,0,2*Pawn.proneHeight-2),
 collisionRadius))
 {
 Cover[i]=NoCover; // if you can't take cover prone there is
 // no cover
 FireFly[i].SetDrawScale(0.0); // don't want to see them
 // move the point up so it can be used for navigation

69

 FireFly[i].Move(MakeVect(0,0,Pawn.default.CollisionHeight));
 }
 else if (CanBeSeen(enemyEyes,
 FireFly[i].Location+MakeVect(0,0,2*Pawn.crouchHeight-2),
 collisionRadius))
 {
 result=true;
 Cover[i]=Prone;
 FireFly[i].Move(MakeVect(0,0,2*Pawn.ProneHeight-2));
 }
 else if (CanBeSeen(enemyEyes,
 FireFly[i].Location+MakeVect(0,0,
 2*Pawn.default.collisionHeight-2),collisionRadius))
 {
 result=true;
 Cover[i]=Crouching;
 FireFly[i].Move(MakeVect(0,0,2*Pawn.CrouchHeight-2));
 }
 else
 {
 result=true;
 Cover[i]=Standing;
 FireFly[i].Move(MakeVect(0,0,
 2*Pawn.default.CollisionHeight-2));
 }
 }
 return result;
} // End function FindCover()

/***
* This function decides where the coverbot should go based on which
* sensors are in cover and can be reached by either a straight line
* path or by a two part path through another sensor in the grid. The
* coverbot always tries to reach the closest point in cover.
* param none
* returns true if a path to the cover was found
**/
function bool findPathToCover()
{
 local int i, j; // counters
 local float min_distance; // the current closest distance
 local float distanceToPoint;
 local vector hitLocation; // required by trace function
 local vector hitNormal; // required by trace function
 local vector extent; // size of the collision cylinder
 local int directPathTo[51]; //0=False, 1 = True

 // set the colision volume for traces
 Extent = Pawn.GetCollisionExtent();

 // Find all the points that are directly reachable and mark them.
 // By doing this one time in the beginning and storing the result
 // we save repeating it over and over again when looking for
 // two-part paths
 for (i=0; i<num_fireFlys; i++)
 {

70

 if (pointReachable(fireFly[i].Location))
 directPathTo[i]=1;
 else
 directPathTo[i]=0;
 }

 // Find out which point we want to go to
 min_distance = 9999.0; // set initially very large
 for (i=0; i<num_fireFlys; i++)
 {
 // only check the point if it provides cover
 if (cover[i]!=NoCover)
 {
 //if there is a direct path
 if (directPathTo[i]==1)
 {
 distanceToPoint =
 VSize(fireFly[i].Location-Pawn.Location);
 if(distanceToPoint < min_Distance)
 {
 // if this is the best point so far, set destination
 middle = i;
 end = i;
 return True; // Don't need to check anything else
 }
 }
 // else check if the point is reachable indirectly
 else
 {
 // go through all other points
 for (j=0; j<num_fireFlys; j++)
 {
 // only check midpoints that are reachable,
 // don't check a sensor against itself,
 // don't check the agent's current location
 if((directPathTo[j]==1) && (i!=j) && (j!=0))
 {
 // see if the second point is reachable
 // from the first
 if (Pawn.Trace(HitLocation, HitNormal,
 FireFly[i].Location, FireFly[j].Location,
 , , Extent)==None)
 {
 distanceToPoint =
 VSize(Pawn.Location-FireFly[j].Location)
 + VSize(FireFly[j].Location-FireFly[i].Location);
 // if it is the closest point set it as the
 // destination
 if (distanceToPoint < min_Distance)
 {
 min_Distance = distanceToPoint;
 middle = j;
 end = i;
 }
 } // end if
 } // end if
 } // end for j

71

 } // end if/else
 } // end if point provides cover
 } // end for i
 if (min_distance>9998.0) // > used to avoid floating point errors
 return False;
 else
 return True;
} // end function FindPathToCover

/***
* This function resets all of the fireFlys to the same size.
* param newSize the new size to make the fireFlys
* returns nothing
**/
function ResizeFireFlys(float newSize)
{
 local int a;

 printToConsole("Resizing FireFlys: " $ newSize, Purple);

 for (a=0; a<num_FireFlys; a++)
 FireFly[a].SetDrawScale(newSize);
} // End function resizeFireFlys()

/***
* This function destroys all of the current fireFlys.
* returns nothing
**/
function DestroyFireFlys()
{
 local int i;
 for (i=0; i<num_fireFlys; i++)
 fireFly[i].destroy();
 num_fireFlys = 0;
} // End function DestroyFireFlys

/***
* This function highlights the path chosen by the bot by increasing
* the size of the fireFlys that it is using to navigate.
* returns nothing
**/
function ShowPath()
{
 fireFly[middle].SetDrawScale(0.3);
 fireFly[end].SetDrawScale(0.6);
}

72

/********************/
/* STATES */
/********************/

/***
* This the default starting state for the bot. The fireFlys for the
* sensor grid are created and clamped to ground level. The bot
* changes to the FindCoverState when it takes damage.
**/
auto state WaitingState
{
 ignores ShootTarget, NotifyTakeHit, Killed, NotifySeePawn, SeePawn,
 SeePlayer, SeeMonster, HearNoise;

 function TakeDamage(int damage, Pawn instigatedBy,
 Vector hitLocation, Vector momentum,
 class<DamageType> damageType,
 optional BoneInfo bone,
 optional Controller killerController)
 {
 enemy = instigatedBy;
 PrintToConsole("Took Damage from "$Enemy.OwnerName, red);
 GotoState('FindCoverState');
 }

Begin:
 PrintToConsole("WaitingState - Begin", red);
 Pawn.shouldStand(true);
 CreateSensorGrid();
End:
} // End WaitingState

/***
* When entering this state the bot searches the sensor grid for
* cover locations and decides which cover location it will move to.
* When the bot takes damage again it changes to the MoveToCoverState.
**/
state FindCoverState
{
 ignores ShootTarget, NotifyTakeHit, Killed, NotifySeePawn, SeePawn,
 SeePlayer, SeeMonster, HearNoise;

 function TakeDamage(int damage, Pawn instigatedBy,
 Vector hitLocation, Vector momentum,
 class<DamageType> damageType,
 optional BoneInfo bone,
 optional Controller killerController)
 {
 Enemy = instigatedBy;
 PrintToConsole("Took Damage from "$enemy.OwnerName, blue);
 GotoState('MoveToCoverState');
 }

Begin:
 PrintToConsole("FindCoverState - Begin", blue);
 foundCover = FindCover();

73

 if (foundCover)
 foundPath = FindPathToCover();
 else
 foundPath = False;

 if (foundCover)
 PrintToConsole("FoundCover = TRUE", Purple);
 else PrintToConsole("FoundCover = FALSE", Purple);
 if (foundPath)
 {
 PrintToConsole("FoundPath = TRUE", Purple);
 ShowPath();
 }
 else PrintToConsole("FoundPath = FALSE", Purple);
End:
} // End state FindCoverState

/***
* When entering this state the bot uses the path generated by the
* last state to move into cover. When it takes damage again, it
* resets itself and moves back into the waitingState.
**/
state MoveToCoverState
{
 ignores ShootTarget, NotifyTakeHit, Killed, NotifySeePawn, SeePawn,
 SeePlayer, SeeMonster, HearNoise;

 function TakeDamage(int damage, Pawn instigatedBy,
 Vector hitLocation, Vector momentum,
 class<DamageType> damageType,
 optional BoneInfo bone,
 optional Controller killerController)
 {
 enemy = InstigatedBy;
 PrintToConsole("Took Damage from "$enemy.OwnerName, green);
 DestroyFireFlys();
 GotoState('WaitingState');
 }

Begin:
 PrintToConsole("MoveToCoverState - Begin", Green);
 if (FoundPath)
 {
 MoveTo(firefly[middle].Location);
 MoveTo(firefly[end].Location);

 focus = enemy;
 FinishRotation();

 if (cover[end]==Crouching)
 Pawn.shouldCrouch(true);
 else if (cover[end]==Prone)
 Pawn.shouldProne(true);
 else if (cover[end]==NoCover)
 PrintToConsole("Error - No Cover where I am moving to",
 Purple);

74

 }
 else PrintToConsole("Nowhere to run to Baby! Nowhere to Hide!",
 Purple);

 Pawn.desiredRotation = Rotator(Enemy.Location-Pawn.Location);
End:
} // End state MoveToCoverState

/************************
 DEFAULT PROPERTIES
*************************/
defaultproperties
{
 num_rings = 5;
 num_points = 10;
 distance_between_rings = 100.0;
}

75

E. NPC_COVERBOTTWO.UC

/* ==
 * Filename: NPC_CoverBotTwo.uc
 * Date: 19 SEP 2003
 * Author: MAJ Morgan
 * ==
 * This class tells the engine which skins and what controller to
 * use for the bot.
 * ==
 */
class NPC_CoverBotTwo extends AGP_Character
 placeable;

function TakeDamage(int Damage, Pawn InstigatedBy, Vector HitLocation,
 Vector Momentum, class<DamageType> DamageType,
 optional BoneInfo Bone,
 optional Controller KillerController)
{
 Controller.TakeDamage(Damage, InstigatedBy, HitLocation, Momentum,
 DamageType, Bone, KillerController);
}

defaultproperties
{
 Skins[0]=Texture'T-Characters.Soldier.Soldier_PANTS_Tiger_Opfor'
 Skins[1]=Texture'T-Characters.Soldier.Soldier_SHIRT_Tiger_Opfor'
 Skins[2]=Texture'T-Characters.Soldier.Soldier_HAND_Blk_Gloves_1p'
 Skins[3]=Texture'T-Characters.Soldier.Soldier_FACE_Opfor_008'

 Mesh=Mesh'Soldier_3PMesh'

 bStaticSkinsAndMeshes = true;

 ControllerClass=class'AGP.CoverBot2Controller'
}

76

F. COVERBOT2CONTROLLER.UC

/* ==
 * Filename: CoverBot2controller.uc
 * Date: 19 SEP 2003
 * Author: MAJ David J. Morgan, U.S. Army
 * ==
 * Base AI for CoverBots with full speed execution. The trigger for
 * the bot to change states is shooting it. When this bot is shot
 * the first time it looks for cover and tries to move there. If no
 * cover is found, it stays where it is and prints a message to the
 * screen. When the bot is shot a second time it resets itself.
 * ==
 */

class CoverBot2Controller extends AgentController;

/************************/
/* VARIABLES */
/************************/
var Color red, green, blue, purple; // Colors for messages
var int displayTime; // Display time for messages
var vector sensor[51];
var int num_rings; // number of rings of sensors
var int num_points; // number of sensors per ring
var int num_sensors; // number of sensors created
var float distance_between_rings;
var Actor midpoint, endpoint; // path to the point in cover
var bool foundCover, foundPath;
var int middle, end;

var enum CoverType
{
 Standing,
 Crouching,
 Prone,
 NoCover
} cover[51]; // need (num_rings * num_points) + 1 of these
// there is a 1-to-1 correspondance between the index of the cover and
// the sensor

/************************/
/* PREGAMEPLAY */
/************************/
function PreBeginPlay()
{
 Super.PreBeginPlay();
}

function BeginPlay()
{
 Super.BeginPlay();
}

77

function PostBeginPlay()
{
 Super.PostBeginPlay();
}

/***
* This method does some initialization of some variables when the
* CoverBot is created.
**/
function Possess(Pawn aPawn)
{
 Super.Possess(aPawn);

 // set colors for printing messages to the console
 red.R = 255; red.G = 0; red.B = 0; red.A = 255;
 green.R = 0; green.G = 255; green.B = 0; green.A = 255;
 blue.R = 0; blue.G = 0; blue.B = 255; blue.A = 255;
 purple.R = 255; purple.G = 0; purple.B = 255; purple.A = 255;

 // set time for messages to be displayed in the console
 displayTime = 20;
}

/***
* This is a utility method that makes it easier to print console
* messages to the screen.
* param message the text message to display
* param textColor the text color to display the message in
* returns nothing
**/
function PrintToConsole(String message, Color textColor)
{
 Level.GetClientController().Player.Console.Message(message,
 displayTime,textColor);
}

/***
* This function builds the sensor grid. The sensors are placed in
* their initial positions and clamped to ground level.
* param none
* returns none
**/
function CreateSensorGrid()
{
 local int i, j; // counters
 local rotator r; // direction to current point
 local float distance; // distance to the current ring
 local vector sensorLocation;
 local float elevation;

 // set the initital positions for all of the Sensors
 distance = 0;

 // build one Sensor at the feet of the agent
 sensor[0] = Pawn.Location-MakeVect(0,0,Pawn.CollisionHeight);
 num_Sensors = 1;

78

 // build the rest of the Sensors in the grid
 for (i=0; i<num_rings; i++) // builds each ring
 {
 // set rotation to straight forward relative to CoverBo
 r = rotation;
 // stagger the odd numbered rings
 if (i%2==1)
 r.yaw = r.yaw + (65500/num_points)/2;
 distance = distance + distance_between_rings;
 // places Sensors for the current ring
 for (j=0; j<num_points; j++)
 {
 // find direction to next Sensor
 r.yaw = r.yaw + 65500/num_points;
 // move it out from center
 sensorLocation = Pawn.Location + distance*vector(r);
 // set it at foot level
 sensorLocation.z -= Pawn.collisionHeight;

 // if the sensor successfully clamped to the ground,
 // build it
 if (ClampSensorToGround(sensorLocation,distance,elevation))
 {
 sensorLocation.z = elevation;
 Sensor[num_Sensors] = SensorLocation;
 num_sensors++;
 }
 }
 }
} // End function CreateSensorGrid()

/***
* This function clamps sensors to ground level and tests if the
* surface is standable. If no surface exists or the surface is
* not standable the function returns false to indicate that a
* sensor should not be created.
* param sensorLocation starting location for the sensor
* param distanceFromPawn how far the sensor is from the Agent
* param elevation the final elevation of the sensor
* returns true if a sensor should be created at the passed location
**/
function bool ClampSensorToGround(vector sensorLocation,
 float distanceFromPawn,
 out float elevation)
{
 local vector hitLocation, hitNormal;
 local float verticalDistance, pawnHeight;
 local vector verticalVector;
 local Actor hitActor;

 // create a vector that can be used to determine where a line is
 // that extends from the agent at a 45 degree above and below the
 // horizontal plane. 0.785398163397 is 45 degrees in radians
 verticalDistance = distanceFromPawn*Tan(0.785398163397);
 verticalVector = MakeVect(0,0,verticalDistance);

79

 // have to use default, current height may be different
 pawnHeight = 2*Pawn.default.CollisionHeight;

 hitActor = None;

 // First Check: Trace from the Sensor's Location down to the line
 if (verticalDistance < pawnHeight) // allow drops up to it's height
 hitActor = Pawn.Trace(hitLocation, hitNormal,
 sensorLocation-MakeVect(0,0,PawnHeight),
 sensorLocation);
 else
 hitActor = Pawn.Trace(HitLocation, HitNormal,
 sensorLocation-verticalVector,
 sensorLocation);

 // If nothing was hit
 // Second Check: Trace from upper bound down
 if (hitActor == None)
 hitActor = Pawn.Trace(HitLocation, HitNormal,
 sensorLocation-vect(0,0,1),
 sensorLocation+verticalVector);

 // If still haven't hit anything
 if (hitActor == None)
 return false;
 else
 {
 // check if the agent can stand on the surface
 if (Standable(HitNormal))
 {
 elevation = HitLocation.z;
 return true;
 }
 else
 return false;
 }
} // End function ClampSensorToGround

/***
* This function determines if the agent can stand on the surface.
* param normal the surface normal
* returns true if the surface is flat enough for the bot to stand.
**/
function bool Standable(vector normal)
{
 // normal is a unit vector (length of 1), if the z component
 // of the normal is > 0.7071 then the surface has a slope
 // of less than 45 degrees
 if (normal.z>0.7071)
 return True;
 else
 return False;
} // End function Standable

80

/***
* This function determines if there is line of sight from the threat
* to the target.
* param threat location of the threat
* param target location of the target
* param radius the radius of the target
* returns true if there is line of sight to the location of target
* or points radius units to the left or right of the target
**/
function bool CanBeSeen(vector threat, vector target, float radius)
{
 local vector AtoB; // a vector from the threat to the target
 local vector sideStep; // vector used to find points to the sides
 local rotator r;

 if (FastTrace(threat, target))
 {
 // Line of sight to center of target, return True
 return True;
 }
 else // Check points to the left and right
 {
 AtoB = target - threat;
 r = Rotator(AtoB);
 // Unreal has 65500 units in a circle

 // this turns the vector 90 degrees
 r.yaw = r.yaw + 65500/4;

 // Create a unit vector in the direction of r
 sideStep = Vector(r);

 // widen the sidestep to radius
 sideStep = sideStep * radius;

 if (FastTrace(threat, target+sideStep) ||
 FastTrace(threat,target-sideStep))
 {
 // if either of these can be seen then return True
 return True;
 }
 else
 {
 return False;
 }
 }
} // end function CanBeSeen

81

/***
* This function determines if any of the sensors in the grid are in
* cover. If they are in cover, it determines the tallest posture
* that the agent can assume in that position. The results are stored
* in the cover array. All sensors are reset to waist level for the
* agent to aid in navigation in the next step.
* param none
* returns true if cover was found
**/
function bool FindCover()
{
 local int i;
 local vector enemyEyes;
 local bool result;

 result = false;

 enemyEyes = Enemy.EyePosition();
 for (i=0; i<num_Sensors; i++)
 {
 // Check if there is cover
 if (CanBeSeen(enemyEyes,
 Sensor[i]+MakeVect(0,0,2*Pawn.proneHeight),
 collisionRadius))
 {
 Cover[i]=NoCover; // if you can't take cover prone
 // there is no cover
 }
 else if (CanBeSeen(enemyEyes,
 Sensor[i]+MakeVect(0,0,2*Pawn.crouchHeight),
 collisionRadius))
 {
 result=true;
 Cover[i]=Prone;
 }
 else if (CanBeSeen(enemyEyes,
 Sensor[i]+MakeVect(0,0,2*Pawn.default.collisionHeight),
 collisionRadius))
 {
 result=true;
 Cover[i]=Crouching;
 }
 else
 {
 result=true;
 Cover[i]=Standing;
 }
 // move up for navigation checks
 sensor[i].z+=Pawn.default.CollisionHeight;
 }
 return result;
} // End function FindCover()

82

/***
* This function decides where the coverbot should go based on which
* sensors are in cover and can be reached by either a straight line
* path or by a two part path through another sensor in the grid. The
* coverbot always tries to reach the closest point in cover.
* param none
* returns true if a path to the cover was found
**/
function bool FindPathToCover()
{
 local int i, j; // counters
 local float min_distance;
 local float distanceToPoint;
 local vector hitLocation, hitNormal, extent;
 local int directPathTo[51]; //0=False, 1 = True,

 // sets the collision volume for traces
 extent = Pawn.GetCollisionExtent();

 // Find all the points that are directly reachable and mark them.
 // By doing this one time in the beginning and storing the result
 // we save repeating it over and over again when looking for
 // two-part paths
 for (i=0; i<num_sensors; i++)
 {
 if (pointReachable(sensor[i]))
 directPathTo[i]=1;
 else
 directPathTo[i]=0;
 }

 // Find out which point we want to go to
 // initially set VERY high so it's east to test
 min_distance = 9999.0;
 for (i=0; i<num_Sensors; i++)
 {
 // only check the point if it provides cover
 if (cover[i]!=NoCover)
 {
 //if there is a direct path
 if (directPathTo[i]==1)
 {
 distanceToPoint = VSize(Sensor[i]-Pawn.Location);
 if(distanceToPoint < min_distance)
 {
 // if this is the best point so far, set destination
 middle = i;
 end = i;
 return True; // Don't need to check anything else
 // Since we check inside-out the first direct path
 // that we find that is less than the current
 // min_distance is guaranteed to be the closest
 // point
 }
 }
 // else check if the point is reachable indirectly
 else

83

 {
 // go through all other points
 for (j=0; j<num_Sensors; j++)
 {
 // only check midpoints that are reachable,
 // don't check a point against itself
 // don't check where the coverbot is already
 // standing
 if((directPathTo[j]==1) && (i!=j) && (j!=0))
 {
 // see if the second point is reachable
 // from the first
 if (Pawn.Trace(HitLocation, HitNormal,
 sensor[i], sensor[j], , ,
 Extent)==None)
 {
 distanceToPoint =
 VSize(Pawn.Location-sensor[j])+
 VSize(sensor[j]-sensor[i]);
 // if it is the closest point set it as
 // the destination
 if (distanceToPoint < min_distance)
 {
 min_distance = distanceToPoint;
 middle = j;
 end = i;
 }
 } // end if
 } // end if
 } // end for j
 } // end if/else
 } // end if point provides cover
 } // end for i
 if (min_distance>9998.0) // >9998 to avoid floating point errors
 return False;
 else
 return True;
} // end function FindPathToCover

84

/********************/
/* STATES */
/********************/

/***
* This is the initial starting state where the bot just stands there
* and does nothing. If the bot takes damage from someone, it sets
* them to be its enemy and switches to TakeCoverState.
**/
auto state WaitingState
{
 ignores ShootTarget, NotifyTakeHit, Killed, NotifySeePawn, SeePawn,
 SeePlayer, SeeMonster, HearNoise;

 function TakeDamage(int Damage, Pawn InstigatedBy,
 Vector HitLocation, Vector Momentum,
 class<DamageType> DamageType,
 optional BoneInfo Bone,
 optional Controller KillerController)
 {
 Enemy = InstigatedBy;
 PrintToConsole("Took Damage from "$Enemy.OwnerName, Red);
 GotoState('FindCoverState');
 }

Begin:
 PrintToConsole("WaitingState - Begin", Red);
 Pawn.shouldStand(true);
End:

} // End WaitingState

/***
* In this state the bot attempts to find cover and move to that
* location. If it does not find cover, it does nothing but print
* a message to the screen. When the bot takes damage again it
* switches to WaitingState again.
**/
state FindCoverState
{
 ignores ShootTarget, NotifyTakeHit, Killed, NotifySeePawn, SeePawn,
 SeePlayer, SeeMonster, HearNoise;

 function TakeDamage(int Damage, Pawn InstigatedBy,
 Vector HitLocation, Vector Momentum,
 class<DamageType> DamageType,
 optional BoneInfo Bone,
 optional Controller KillerController)
 {
 Enemy = InstigatedBy;
 PrintToConsole("Took Damage from "$Enemy.OwnerName, Blue);
 GotoState('WaitingState');
 }

Begin:
 PrintToConsole("FindCoverState - Begin", Blue);

85

 CreateSensorGrid();
 FoundCover = FindCover();
 if (FoundCover)
 FoundPath = FindPathToCover();
 else
 FoundPath = False;

 if (FoundCover)
 PrintToConsole("FoundCover = TRUE", Purple);
 else PrintToConsole("FoundCover = FALSE", Purple);

 if (FoundPath)
 {
 PrintToConsole("FoundPath = TRUE", Purple);
 }
 else PrintToConsole("FoundPath = FALSE", Purple);

 if (FoundPath)
 {
 MoveTo(Sensor[middle]);
 MoveTo(Sensor[end]);

 Focus = Enemy;
 FinishRotation();

 if (cover[end]==Crouching)
 Pawn.shouldCrouch(true);
 else if (cover[end]==Prone)
 Pawn.shouldProne(true);
 else if (cover[end]==NoCover)
 PrintToConsole("Error - No Cover where I am moving to",
 Purple);
 }
 else PrintToConsole("Nowhere to run to Baby! Nowhere to Hide!",
 Purple);

End:
} // End state FindCoverState

/************************
 DEFAULT PROPERTIES
*************************/
defaultproperties
{
 num_rings = 5;
 num_points = 10;
 distance_between_rings = 100.0;
}

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

VII. CONCLUSIONS AND FUTURE WORK

A. INTRODUCTION
In this chapter, we summarize some of the things that we learned during

the development of these algorithms and present several ideas for future areas

of research.

B. CONCLUSIONS
1. Shadow Volume Binary Space Partition Tree
The study of the SVBSP Tree algorithm proved to be very rewarding even

though it does not appear to be a viable solution at this time. It has the greatest

potential of the three algorithms to provide an accurate solution to finding cover

in a scene. However, it also has significant difficulties that may keep it from

being implemented any time in the near future.

Generating a cover volume is both the strength and the weakness of the

SVBSP tree. The way that the SVBSP tree builds the shadow volume provides

the most accurate representation of the cover. At the same time, this process

makes it extremely difficult to determine where the agent can fit inside of the area

of cover. When the cover area is broken down into subspaces many of them will

not be large enough for the agent to fit entirely inside of it. There is no clear and

efficient solution to determining if the agent is in cover when it spans several

subspaces.

At this time, we feel that more research is necessary before we can

determine if the SVBSP tree method can be efficiently used in a real-time

simulation for finding cover.

2. Depth Mapping
The Depth Mapping algorithm has potential as a viable solution for finding

cover. It still has problems with determining how to deal with objects that are

behind the surface of the cover area, but its similarity to computer vision

techniques make it interesting for cognitive studies.

88

Depth Mapping may provide the best support for cognitive studies of

finding cover. It may be possible to merge what the agent can see and what it

thinks the threat can see into a common picture. To this we can add what the

agent knows about areas that it cannot see (memory) and speculation of the

areas that it knows nothing about (beliefs). This may provide a closer model of

the actual cognitive process of finding cover.

It is not clear at this point whether the algorithm is computationally efficient

or not. There is a trade-off between resolution (which determines how accurately

it finds cover locations) and computational complexity (which determines how

fast it operates). As the grid becomes finer, it does a better job of finding cover,

but the calculations required grow exponentially. Further research will be

necessary to determine if there is a balance point where the algorithm is both fast

and accurate.

3. Sensor Grid
The Sensor Grid algorithm provides the most effective solution of the three

for finding cover in our current context. That is, finding cover in a first-person

shooter, on a single machine, using current computing technology. It is

computationally efficient enough to operate in real time and accurate enough to

find reasonable cover locations. It is easy to program and can be applied to a

wide variety of simulations. It is able to deal with a wide variety of situations

inside the virtual environment and still provide a solution. For now, it is the best

solution for finding cover in dynamic, three-dimensional, virtual environments.

4. CoverBot
a. Machine Performance
CoverBot has good speed performance as currently written, but

several modifications could easily improve its performance even more. We

tested the CoverBot on a Dell Dimension 8200 with a Intel Pentium 4 2.53 GHz

processor, 512 MB of RAM, and an NVIDIA GeForce4 Ti 4600 video card. When

the CoverBot attempts to find cover there is a barely noticeable flicker during

execution. By changing some of the code from UnrealScript to C++ and

improving our path-finding algorithm even this should disappear. Another

89

performance-improving option is to split the computation over several animation

frames.

Changing all the functions in the CoverBot from UnrealScript to

C++ will greatly increase the speed of the algorithm. UnrealScript runs many

times slower than C++ code inside the simulation. Due to the similarities in

UnrealScript and C++ this should be very simple to do.

An improved path-planning algorithm would also greatly enhance

the speed performance of CoverBot. When designing CoverBot we wanted to

leave the number of sensor rings and the number of sensors per ring as

variables. This allowed us to adjust them until we got a good mix between speed

and accuracy. However, this required us to use a brute force method for path-

finding.

In order to determine if there are any two-part paths that lead to the

cover position, we search every single other sensor in the grid. Sometimes this

does not make sense. For instance, when checking a point directly to your right,

there really is no need to check the point directly to your left that will require you

to go back through your current position to reach the point to your right.

If we fix the number of sensor rings and number of sensors per

ring, we can design a more efficient means of searching for paths into the cover.

The paths that we want to search can be predetermined based on the

arrangement of the sensors in the grid. This would also allow the introduction of

paths with three or more sections where appropriate

b. Task Performance
CoverBot reliably finds cover under a wide variety of situations. We

tested it on flat terrain and hilly terrain, inside of buildings, near clusters of

boulders, near stacks of boxes, and around parked vehicles that can be seen

under. In all cases, it was correctly able to identify cover locations. It is able to

deal with small objects and large, few objects and many.

One area where CoverBot does have problems however is

navigating inside of buildings. Buildings typically have narrow doors. Since

90

CoverBot uses its sensor grid to navigate around its environment, it must have

one sensor on either side of the doorway with a clear path between them for it to

successfully make it through the doorway. In all of the tests that we performed,

CoverBot never successfully located a path through the doorway.

An easy way to fix this would be to enable CoverBot to use a level’s

waypoint graph as well as it’s sensor grid to navigate through the environment.

When determining if a point is reachable, CoverBot could search its sensor grid

first for a path. If that fails it could query the waypoint graph to see if another

path exists. We did not implement this in our demonstration, because the level

that we used did not have a waypoint graph built for it.

C. FUTURE WORK
There are many opportunities for future work in the area of cover

algorithms. Here are our suggestions:

• Create a full implementation of the SVBSP Tree algorithm.

• Create a full implementation of the Depth Mapping algorithm.

• Re-implement the Sensor Grid algorithm and eliminate one or more

of the assumptions.

• Conduct a study to determine if there is a difference between the

way we choose cover locations when we conduct deliberately

planning and when we must immediately chose one while under

fire.

• Conduct a study to determine how the performance of CoverBot

compares to a human player in the same simulation.

91

LIST OF REFERENCES

1. “America’s Army Fact Sheet.” [http://www.thearmygame.com/]. March
2003.

2. “Binary Space Partition Trees in 3d Worlds.” OpenGL
[http://www.cs.wpi.edu/~matt/courses/cs563/talks/bsp/document.html].
1997. [cited 26 September 2003]

3. “Binary Space Partitioning Trees FAQ.”
[http://www.opengl.org/developers/code/bspfaq/]. June 1998 [cited 26
September 2003].

4. Board, B. and Ducker, M., “Area Navigation: Expanding the Path-Finding
Paradigm.” Game Programming Gems 3. pp. 240-255. Charles River
Media, 2002.

5. Chin, N. and Feiner, S., “Fast Object-Precision Shadow Generation For
Area Light Sources Using BSP Trees.” Proceedings of the 1992
Symposium on Interactive 3D Graphics. March 1992.

6. Chin, N. and Feiner, S., “Near Real-Time Shadow Generation Using BSP
Trees.” Computer Graphics. v.23(3). pp. 99-106, July 1989.

7. Chrysanthou, Y. and Slater, M., “Shadow Volume BSP Trees for
Computation of Shadows in Dynamic Scenes.” paper presented at the
1995 Symposium on Interactive 3D Graphics. Monterey, CA, 1995.

8. Department of the Army. “FM 21-75 - Combat Skills of the Soldier.”
3 August 1984.

9. Everitt, C. and Kilgard, M., “Practical and Robust Stenciled Shadow
Volumes for Hardware-Accelerated Rendering.” [developer.nvidia.com].
12 March 2002.

10. Fuchs, H., Kedem, Z., and Naylor, B., “On Visible Surface Generation by
A Priori Tree Structures.” Computer Graphics, v.14(3). pp. 124-133. 1980.

11. Fuchs, H., Kedem, Z., and Naylor, B., “Predetermining Visibility Priority in
3D Scenes.” ACM Computer Graphics Proceedings. v.13(2). pp. 175-181.
August 1979.

12. Higgins, D., “Terrain Analysis in an RTS – The Hidden Giant.” Game
Programming Gems 3. pp. 268-284. Charles River Media, 2002.

92

13. Horn, G. and Baxter, J., “An Interactive Planner for Tank Squadron
Assaults.” paper presented at the 2000 UK Planning and Scheduling
Special Interest Group workshop. Open University. Milton Keynes. United
Kingdom. 15 December 2000.

14. Kelly, J., Loomis, J., and Beall, A., “Judgments of Exocentric Direction in
Large-Scale Space.” Journal of Vision, 2(7), 20 November 2002.

15. Liden, L., “Strategic and Tactical Reasoning with Waypoints.” AI Game
Programming Wisdom. pp 211-220. Charles River Media, 2002.

16. Matzka, G., “Shadow Algorithms”
[http://www.cg.tuwien.ac.at/courses/Seminar/SS2001/shadow/shadow.pdf]
. 20 June 2001 [cited 26 September 2003].

17. McCool, M., “Shadow Volume Reconstruction from Depth Maps.” ACM
Transactions of Graphics. v.19(1). pp. 1-26. January 2000.

18. Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach. pp.
31-50. Prentice Hall, 1995.

19. Schneider, P. and Eberly, D., Geometric Tools for Computer Graphics. pp.
673-694. Morgan Kaufmann, 2003

20. Stout, B., “The Basics of A* for Path Planning.” Game Programming
Gems. pp. 254-262. Charles River Media, 2000.

21. Sweeney, T., “UnrealScript Language Reference.”
[http://udn.epicgames.com/pub/Technical/UnrealScriptReference/]. 8
August 2003.

22. “Unreal Developer Network.”
[http://udn.epicgames.com/pub/Main/WebHome/]. 29 September 2003.

23. Van der Sterren, W., “Tactical Path-Finding with A*.” Game Programming
Gems 3. pp. 294-306. Charles River Media, 2002.

24. Van der Sterren, W., “Terrain Reasoning for 3D Action Games.” Game
Programming Gems 2. pp. 307-316. Charles River Media, 2001.

25. Young, T., “Choosing a Relationship Between Path-Finding and Collision.”
Game Programming Gems 3. pp. 321-332. Charles River Media, 2002.

93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chris Darken
Naval Postgraduate School
Monterey, California

4. Joseph Sullivan
Naval Postgraduate School
Monterey, California

5. Rudy Darken
Naval Postgraduate School
Monterey, California

6. Director, Army Modeling and Simulation Office
HQDA, DCS G3, (DAMA-ZS)
Washington, DC

7. Commander
National Simulation Center
Fort Leavenworth, Kansas

8. Commander
National Training Center
Fort Irwin, California

9. Alex Mayberry
Executive Producer, Army Game Project
Monterey, California

10. Christian Buhl
Lead Programmer, Army Game Project
Monterey, California

94

11. Greg Paull
Programmer, Army Game Project
Monterey, California

12. David J. Morgan
Monterey, California

