NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

STAFFSIM, AN INTERACTIVE SSIMULATION FOR
RAPID, REAL TIME COURSE OF ACTION ANALYSISBY
U.S. ARMY BRIGADE STAFFS

by
William E. Bohman

June 1999

Thesis Advisor: Arnold H. Buss
Thesis Co-Advisor: Bard Mansager

Approved for public release; distribution isunlimited.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1999 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

STAFFSIM, AN INTERACTIVE SIMULATION FOR RAPID, REAL TIME
COURSE OF ACTION ANALYSISBY U.S.ARMY BRIGADE STAFFS

6. AUTHOR(S)
William E. Bohman

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER

Nava Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The U.S. Army has fielded a wide range of simulations for tactical units. The purpose of these
simulations range from training individual skills to collective training for corps staffs. Currently fielded
simulations are not designed for operational use. Most are operated by contract civilian personnel and
require fixed base facilities. Furthermore, many of these simulations require extensive lead-time to initiate
useable scenarios. When the army rolls to the field, its simulations are left behind.

The Army’s staff planning process places huge cognitive on demands unit staffs, often resulting in sub-
optimal decision making. Simulations can provide a useful tool to help staffs visualize and understand
complex time-space relationships and unit interactions. Eliminating the need for these factors to be
visualized in the mind’s eye allows staffs to focus their cognitive abilities on synchronizing mission plans.

This thesis develops a prototype simulation for operational use by brigade staffs. The simulations
purpose is course of action analysis as described in the war gaming step of the staff planning process. To be
used operationaly, the simulation must be easy to use, provide rapid scenario development, enable fast
course of action analysis and run on a personal computer. To meet these requirements the simulation
presented in this thesis is built using reusable software components and loosely coupled program modules.

14. SUBJECT TERMS

Software Components, Staff Planning Process, Simulation, Loosely Coupled Software Components 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY _JI._E'.ISSE(AZ(L;JEITY CLASSIFICATION OF 19. SECURITY CLASSIFI- 20. LIMITATION OF ABSTRACT
CLASSIFICATION OF REPORT Unclassified CATION OF ABSTRACT UL

Unclassified : Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution isunlimited

STAFFSIM, AN INTERACTIVE SSMULATION FOR RAPID, REAL TIME COURSE OF
ACTION ANALYSISBY U.S.ARMY BRIGADE STAFFS

William E. Bohman
Magjor, United States Army
B.S., University of Cincinnati, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTSAND SIMULATION
from the

NAVAL POSTGRADUATE SCHOOL
June 1999

Author:

William E. Bohman

Approved by:

Arnold H. Buss, Thesis Advisor

Bard Mansager, Thesis Co-Advisor

Michael Zyda, Academic Associate
Modeling Virtual Environments and Simulation Academic Group

Michael Zyda, Chairman
Modeling Virtual Environments and Simulation Academic Group

ABSTRACT

The U.S. Army has fielded a wide range of simulations for tactical units. The
purpose of these simulations range from training individual skills to collective training
for corps staffs. Currently fielded simulations are not designed for operational use. Most
are operated by contract civilian personnel and require fixed base facilities. Furthermore,
many of these simulations require extensive lead-time to initiate useable scenarios. When
the army rolls to the field, its simulations are left behind.

The Army’s staff planning process places huge cognitive demands on unit staffs,
often resulting in sub-optimal decision making. Simulations can provide a useful tool to
help staffs visualize and understand complex time-space relationships and unit
interactions. Eliminating the need for these factors to be visualized in the mind’s eye
allows staffs to focus their cognitive abilities on synchronizing mission plans.

This thesis develops a prototype simulation for operational use by brigade staffs.
The simulations purpose is course of action analysis as described in the war gaming step
of the staff planning process. To be used operationally, the simulation must be easy to
use, provide rapid scenario development, enable fast course of action analysis and run on
apersonal computer. To meet these requirements the simulation presented in this thesisis

built using reusable software components and loosely coupled program modules.

vi

TABLE OF CONTENTS

[A I RO 0 10 L O I K 1 1
Y\ Lo 1 V7N 1L T 1
B. BACKGROUND ...cuttttiiiiiii ittt e e e ettt e e e s s et e b e e e e s s e e e bbb s e ees s e e e bbbt e eessee st bbb s eeessee s bbb e eesssessbbnasses 3
C. FIELDED SIMULATIONS cotttttiiiiiitttttti i s e esseessbbasssessseesbba s sesssse s s b b s eeasses s bbb s easses s bbb seesssensbbaanseeasies 5

Lo JANUS. ... 6
2. Brigade/Battalion Battle SImulation BBS............coociiiiiiiiiieiiee ettt 8
3. Corp Battle SIMUIBLION CBS..........oo ittt ettt sae e sabe e sbe e e sbe e e saeeesareeaas 9
D. COMBAT TRAINING CENTERS.ciitttttuiiiiieiiittttiiieestrestssitesstesssteesteessseesstest st 10
SRS 1 1Y 1N 23 2T 11
F. SUMMARY OF CHAPTERS. ...tttuiiiiiiiitttttiiiieestettttissessstestsa s eessteassbatesstesssba s seesstes bbb seesseessbaannsns 12

[I. THE MILITARY DECISION MAKING PROCESS (MDMP) ...ccciiiiiiiiiiiiii e 15
A. PURPOSE OF THE IMIDIMIP ...ttt e e e e s e e st e e e e s s e e s bbb eeeasseaaaes 15
3 Y1 =3 = (0] 010 I c) 2T 15

L. MISSION ANAIYSIS. ..ottt e bttt e e shee e eabe e sabe e e be e e abee e sabeesabeeenbeeeabeeenareesnrean 16
2. Course Of ACLION DEVEIOPIMENE...........eiiiiieiii ettt sb e sb e e sae e e sabe e s beeesbeeesaeeas 16
3. CoUrSE Of ACHION ANAIYSIS. ..ttt ettt ettt ettt sab e be e st et e sbe e e saee e sabeesbeeanbeeeaneeas 17
C. COURSE OF ACTION ANALYSISIN PRACTICE .uuuiiiiiiiiitiiiie ettt e e s s e eatbs s s e s s s eaab s s s s s sesabbaaseeaanes 19
D. POTENTIAL ROLE OF SIMULATION INTHE MDMP ...ttt 21

[11. STAFF SIMULATION (STAFFSIM) oottt 23
A, INTRODUGCTION ..iitttuuiiiiiiiitttiieieeesstssts s seessseasssaseessstessba s teessses s b aaassesseessbaansessssensbasansseesssnnsses 23
B. SOFTWARE COMPONENTS ..tttuuitiiiiettttissieesstesstsssessssesssasatesssessssateessessssaseesstestarteesserssssns 24
(OIS = =S T Y @00 V[=N = TR 26

L. THE COMPONENES ...ttt eiteee ettt ee et ee et ettt e st e e bt e e sbe e e eheeeesbeesabeeabee e abeeesnbeesmbeesnbeeeabeeesnreasnreans 26
2. ComponENt COMIMUNICEEIONuieiueeeitee ettt et e et ee e sbee e sabe e sabe e s be e e sbeeesaeeesabeesbeeanbeeesaneas 30
D. SUMMARY .eutiiiiitttttii it eestestb s eessses s bt eeessee s bbbt seaes s e s s b b s eeasse s s bbb eees s e s s bbb seessse s bbb aeesseensbbanssns 33

[V. BATTLE SIMULATION (BATTLESIM) oottt 35
A, INTRODUGCTION ...ittttuiiiiiiiiitttiisieeesstestsesseesssesssa s seessstessba s sseassessbaaasssassesssbaansseesssenstasansseessennsses 35
B. BUILDING BLOCK COMPONENT MODELS.....cuttuiiiiiiiiiiriiiiiieieieeasiiin e s e s sessssassessssessaaansseesssessssnnnsns 37

1. Mover and BaSiCIMIOVEScooooiiiieeeeeeeeeeeee 37

2. SENSOI AN0 BASICSENSONceeiiiiiiiiiiiiiiiiieeeeeeteeeeeeeeessessessnnnnnns 38

3. Weapon and BaSICWEEPIONccueiiiiiiiieiaiiieeriieesieeesteeestee e sate e sabe s s be e sbee e saeeesabeesbeeanbeeesaeeas 43

L T (< Oo] 1 (o) 44

C. COMPONENT CONTAINERSiiiitttttiietttieettsitsesstiestsseessstesssaasessstessssastesstessssasssessseessssnssessne 47
L VENICIE 47

2 1o 1) SRR 49

D. COMPONENT INTERACTIONS. ... ciiiiittttuiieeeitietttsseesteestsseesstessssateesteeststessstestaeessersssns 50
L. INrOAUCLION ... 50

2. BVENE HANAING ...ttt ettt ettt et e et e e sabe e sabe e s be e e be e e eaee s 51

A LISENEIS. .. 51

D, EVENE ClaSSES. .. s 52

C. BveNt SCREAUITING.......eieee et sare e 52

SRS U 1Y 1N 23 2R 54

Vil

V. STAFFSIM IMPLEMENTATION ..ottt s 55

A, INTRODUGCTION ...iitttuuiiiiiiiitttiisieeesstssts s eesssesssaseesssee st baaseesssessbaaassassesssbaansssesssesssasanssessseessses 55

B. SCENARIO DEVELOPMENT .tttuuiiiiiiiittttiiieeessiesttsiseeesssesssaaseessteassaasesssesssbasessstestarseessersssssnnsns 55

1. Order Of Batl@.......cooeeeeeeeeeeeeeeeee 56

a. OppoSing Orders of BaLle..........cooiuiiiiiiiiie e 56

b. Order of Battle INPut t0 STAFFSIMcooiiiieiee e 58

A O o 18 Yo)l AXw 1 (o] o W TTRTRRRRRRTRR 58

A OPFOR CoUrse Of ACHON.......cooeeeeeeeeeeeeeeeeeeeeeee e 59

b. Friendly FOrces Course Of ACHION........coiiiiiiiie ettt 59

C. Course of Action INPUL t0 STAFFSIM.c..uiiiiiii et 61

C. SCENARIO EXECUTION .utttuiiiiiiiitttiiiieeesseesbtassseesssesbbasseassses bbb seessees bbb sesssessbbaasssesssensbssnnsseasnes 62

D. STAFFSIM VERSUS SIMULATION REQUIREMENTScccvttuiiiiiieiiietiiinieeesseesssiisesssssssassnsesssesssssnnsnns 67

SRS 1 1Y 1N 23 2R 69
V1. CONCLUSIONSttt e e e e e e e e e e s et b e e e e e e e s seabbaeeeeeeeesasbbaeeeeeeessnnssrreeess 71
A, CONCLUSIONScitttttiiiieeiiettti sttt esssest s seesteeat b bt eeesstessba s stessses s b baa s ssessesssbaansssesssenssbsansseesssnnsses 71

B FUTURE WORK ...utttuiiiiiiiiiiiiei e e e ettt s e e e e st et b s s e e e s e e st b s e es s s e e e b b s e eessee e bbb e eesseea bbb e eesseensbbansses 72

1. High Resolution Combat MOGES..........eiiiiieiieieie ettt 72

2. Battlefield Operating SYSIEIMS.......coouii ittt sae e sbe e s be e sbe e saee s 72

3. SYSIEM PEITOIMEICEeeiiiei ettt ettt ettt et e bt e bt e e saee e sabe e sbeeeabeeeeaeeas 73

o T (o B (o1 101 g1 (o] o [P R RR 73

(OIS U Y Y 1 =3 2RO 73
APPENDIX A: SELECTED IMPLEMENTATION CODE LISTINGS......ccoooeeeieeiietiieeeee e 79
APPENDIX B: ACROYMNS ... oottt ettt e e et e e e e e e s s eab b e e e e e e e e s e aabbeeeeeeessennsrreeess 105
LIST OF REFERENCGES. ...ttt ettt ettt e e e ettt e e e e e e e s bbb a e e e e e e e s seabbaeeeeeeesennnees 107
INITIAL DISTRIBUTION LIST ..ottt ettt ettt e e e e s s eatbae e e s e e e s snnabbaeeeeaeessnnnsrreeess 111

viii

LIST OF FIGURES

Figure 3.1: STAFFSIM COMPONEIESeieiuteeiteeeitetestteesibeesteeasteeesseeesaaeasbeessseesaseeessbeesbeeaaseessaseessessns 26
Lo 0 S I a o (o] - U RTRUPRTRIN 27
Figure 3.3: SimBuilder Displaying the CompanyBuilder Panel..............cccooiiiiiiiiiiiiiiie e 28
Figure 3.4: ExecutiveOfficer Configured to Build Movement Orders...........ccooeeriieeiien e enee e 29
Figure 3.5: Component Interface Flow Chart DIagramccooiieiiiiieiiee et 32
Figure 3.6: STAFFSIM Component COMMUNICEEION.cciueiiieieitieesieesieeesieeeseee et e e e see e saeeesaeeeans 33
Figure 4.1: Component Communication Within @ CONLaINEYcoooueeiieiiiiienie e 35
Figure 4.2: BattleSim COmMPONENT TYPES.ueiiieeaieteitieeaiee et asteeesteeessaeesbeessbeessaeeessbeesbeeasseeesaseesnseasns 36
Figure 4.3: Event Graph Snippet for Movement Event Schedulingcoociiiiiiiiiie e 38
Figure 4.4: Smooth Linear and Linear Acceleration Movement Models...........oooiiiiiiiniiiiiii e 38
Figure 4.5: Interplay of Vehicle Sensors, the Registrar and the Mediators............coooeeiieiiiiiiiee e 39
Figure 4.6: Event Graph of the DeteCtion SEQUENCE...........ueiiiiiiiii ettt 41
Figure 4.7: Detection SequUENCE MOTEL...........ooiiii i 42
Figure 4.8: Event Graph of the ENngagement SEQUENCEccocueiiiiaiieeiiee et siee e sieee e 45
Figure 4.9: FireControl DeCiSioN FIOW Chartc.cioiiiiiiiiiii et 46
Figure 4.10: BattleSim Component INTEraClioNS..........ouieiieiiiee ettt saee e 50
Figure 4.11: BattleSim EVENnt HIErarChycooiiioiii ettt 53
Figure 4.12: BattleSim Event SChedUIING..........cei ittt 54
Figure 5.1: OPFOR Order Of BaIE...........ooiiiiiiiieiii ettt ae e saee e sanean 59
Figure 5.2: Friendly Forces Order of Battle..........ooueiiiioiiiii e 59
Figure 5.3: OPFOR COUISE OF ACLIONeiiiiiiiiii ettt ettt ettt sae e sabe e st e s be e s saee e snneaan 62
Figure 5.4: Friendly COUrSe Of ACHON.ooiuiiiii ittt sae et e s be e s sbe e saee e snneaan 62
Figure 5.5: Assigning Unit Orders with EXeCUtIVEOTTICEScoiiiiiiiieiiiiie e 63
Figure 5.6: CRPs Enter Sector and Make CONLACTooiueiiieiiiie et 64
FIgUre 5.7: AGMB ASSAUILSooiiiieeii ettt ettt ettt e b e e sae e e sabe e s be e e be e e saeeesabeaan 65
Figure 5.8: AGMB Penetratesthe DEfENSE..........ooiiiii e 66
Figure 5.9: Main Body Penetrates the DEfENSE.coo it 68

ACKNOWLEDGEMENTS
| would like to express my sincere appreciation to my thesis advisors, Dr. Arnold
Bussand LTC (Ret.) Bard Mansager for their wise counsel, patience and dedication
throughout my work on this thesis.

| would specialy like to thank Dr. Michael Zyda, the creator of the Modeling,
Simulations and Virtual Environments (MOVES) curriculum at the Naval Postgraduate
School. Dr Zyda is an outstanding educator and visionary in his field. He has provided
the insight necessary to understand the complex problems facing the army’ s modeling
and simulation community while providing the analytic and cognitive tools necessary to

find workable solutions for those problems.

Finally, I must recognize the loving support and self-sacrifice of my wife Hyun.
She has endured countless late nights, absent weekends and postponed family time all
without complaint. Without her understanding and support this work could not have

gotten off the ground.

Xi

. INTRODUCTION

A. MOTIVATION

The old campaigner’ s dictum that “in war all things are simple, but the simplest of
things is extremely difficult” is certainly truer today than at any other point in history. The
complexity and variety of military equipment and doctrine has grown exponentially over the
past hundred years. Equally confounding are the speed at which operations can be conducted
and the extreme distances over which a strike can be delivered. The net effect of these
developments have combined to give an antagonist a myriad of potential options while
compressing the time available to consider them into impossibly short decision cycles.

A brigade commander in today’s army must employ a wide variety of weapons and
combat multipliersin order to accomplish the mission. These weapons range in complexity
from automatic rifles to multi-million dollar tanks, helicopters, and jet aircraft. On the
battlefield, however, weight of numbers or degree of technological sophistication alone
cannot produce victory. Soldiers win battles. The soldier who can out-think and out-fight his
opponent is usually victorious. The brigade commander’sjob isto not only lead soldiers into
battle but also to employ soldiers and their weapons at the right place and at the right time in
order to produce the best possible outcome. Thus, commanders must decide how to best
employ the weapons and soldiers under their command.

The art of properly employing soldiers and weapons is not easily learned. The red
difficulty comes from employing the pieces of the team such that the whole is greater than
the sum of the parts. When a brigade combat team is properly employed it is said to have
synchronized itself for the mission. The complex task of synchronizing a brigade during a
combat mission falls upon commanders and their staffs. These officers must ensure each
element of the brigade is properly employed. Brigade units must be given missions that are
supported by and in turn support other brigade units. Each unit must be utilized to magnify
its strengths and mask its weaknesses. When employed in this manner, abrigadeis a
synchronized team and the potential for success is very high. Otherwise, the outcome of the
battle could come down to the flip of a coin or worse.

In its capstone doctrinal manual, FM 100-5 Operations [1], the army has described

synchronization as follows.

Synchronization isarranging activitiesin time and space to mass at the decisive point.
... It meansthat the desired effect isachieved by arranging activitiesin time and space
to gain that effect. Synchronization includes, but is not limited to, the massed effects of
combat power at the point of decision. ... Synchronization usually requires explicit
coor dination among the various units and activities participating in any operation. By
itself, however, such coordination is no guarantee of synchronization unless
commander sfirst visualize the consequencesto be produced and how they sequence
activitiesto produce them. ... Synchronization thustakes place first in the minds of
commander s and then in the actual planning and coor dination of movements, fires, and
supporting activities.

FM 100-5 concludesits discussion of synchronization with a clear statement of the purpose,

or End State, of synchronization.

In the end, the product of effective synchronization is maximum use of every resour ce to
make the greatest contribution to success. ... To achieve thisrequiresthe anticipation
that comes with thinking in depth, mastery of time-space-pur pose relationships, and a
complete under standing of the ways in which friendly and enemy capabilities interact.

In the final analysis, the brigade's fight must be synchronized if victory isto be
assured. Conversely, failure to synchronize can result in battlefield defeat. For soldiers at the
sharp end, life itself hangs in the balance. How, then, is synchronization achieved? How do
army staffs solve the synchronization problem, if at all? Can simulation be used to help staffs
achieve synchronization?

These questions are of central interest for any army that hopes to win on the modern
battlefield. The complex sophistication of modern equipment combined with the decreasing
time available in which to properly analyze tactical options push staffs towards incomplete
analysis. Incomplete or hasty analysis provides for poor decision making. In essence, the
weight of the clock drives decision making instead of rigorous analysis.

For amilitary organization poor decision making is an unacceptable state of affairs.
Inan army that is adverse to casualties, poor decision making cannot be tolerated. Thered
guestion is whether proper analysis can be completed in the time available and, if so, how?
To answer these questions an understanding of how unit commanders and their staffs arrive
at tactical decisions and the toolsthey useisrequired. To answer the question as to whether
asimulation can be used as a decision-making tool, this thesis presents a prototype of such a
simulation and evaluates its utility in speeding the decision making process and improving

the quality of the analysis.

B. BACKGROUND

Brigade commanders and their staffs achieve synchronization by carefully planning
missions within the framework of the Military Decison-Making Process (MDMP). When a
brigade-sized unit receives a mission the commander and staff must develop and implement a
plan to accomplish said mission. The template they follow to arrive at the best possible
course of action isthe MDMP. The MDMP is broken down into a seven-step sequence [2].

Step 1. Receipt of Mission.

Step 2. Mission Analysis.

Step 3. Course of Action Development.

Step 4. Course of Action Analysis.

Step 5. Course of Action Comparison.

Step 6. Course of Action Approval.

Step 7. Orders Production.
This process is meant to provide alogical framework that allows commanders and their staffs
to rapidly arrive at, and execute, a course of action [3].

Within the course of action analysis step of the MDMP, the tool commanders and
staffs use to analyze, and thus synchronize, their developed course of action is the war game.
Within the context of the MDMP the war game is a mental exercise in which the assembled
staff officers smulate how they believe a course of action will unfold. One or more officers
role-play the enemy commander and fight a potential enemy course of action against the
friendly course of action being analyzed. In general, war games are conducted around a map
board. Staff officers move unit icons across the map simulating the enemy and friendly
course of action. When opposing units come in contact, each officer involved attempts to
visualize in his mind’s eye how the battle will unfold. He tries to find shortcomingsin his
own plan that the enemy might exploit and then corrects the foreseen problems. Conversely,
he looks for shortcomings to exploit in the enemy course of action as well. The war gameis
thus a comparison of each potential friendly course of action against each possible enemy
course of action [4].

The actual resolution of battles during the war game is discussed among the staff
without the use of any analytical tools. For example, when two opposing forces come into
contact, the officer playing the enemy force might propose that, based on relative size of

forces, the friendly unit would be destroyed with the loss of a portion of the enemy force.
The officers then debate the merit of the suggestion while discussing options open at this
point to each commander. The product of the debate is not only who loses what, but also a
better understanding of what can potentially happen at this point in the battle and what must
be done for friendly forces to be successful. Better understanding leads to better
synchronization and better decision making.

It is easy to see that the war game places great cognitive demands on commanders
and staffs, since they must visualize the complex interaction of weapons and unitsin time
and space. To properly synchronize the course of action during the war game, staff officers
must fully understand time-space relationships, friendly and enemy unit
capabilities/weaknesses, and probable outcomes of friendly/enemy unit interactions.
Commanders and staffs must master the impact of time and space factors on the battlefield.
The arrangement of activities in time and space is a key challenge facing commanders today
[5].

During the war game, can the debate about ‘who shot John’ be replaced with a
computer simulation that produces a probable outcome? Inserting a smulation into the war
game as an analytical tool can potentially reduce the cognitive burden on staff officersin two
important ways. First, the mental visualization a staff officer must currently develop of the
battle in his mind’s eye is replaced by the visualization presented by the simulation. Second,
the actual thought processes of evauating the interplay of weapons, units, terrain and time
are replaced by the combat modeling of the simulation. The reduction of cognitive workload
will allow officersto focus their mental powers on synchronizing the plan and will provide
them the extra time needed to do the job right.

Can a simulation replace the mapboard and unit icons of today’s war game? Can
human estimates of unit abilities be replaced with accurate computer models of those units?
Can the subjective be replaced with the objective to improve analysis in the war game?
Instead of officers estimating the probable outcomes of battles, can those battles be modeled
accurately in a computer simulation? In other words, can the subjective judgement of humans
be replaced with probabilistic combat models that significantly reduce cognitive workload?
Are such simulations aready available in the army’ s training base today?

The army has fielded a large variety of simulations for use by tactical units. The
purpose of these simulations run the gamut from training rifle marksmanship to staff training
for brigade, division and corps staffs. The purpose of all these smulationsisto train
soldiers. The key point isthat they are not for operational use. When units deploy,
simulations are left behind. Thus the world’s most technologically advanced military
machine enters combat with its staffs using paper, pencil, acetate and colored markers as the
primary tools with which to develop and analyze courses of action. Can one of the currently
fielded simulations be easily adapted for operational use as a war game? In the following
section we will examine some of the existing combat simulations and assess their suitability
for this proposed usage.

C. FIELDED SIMULATIONS

Before examining the simulations currently in use by the army it isimportant to
understand some of the constraints under which brigade staffs operate. The primary
constraint is time. How much time do brigade staffs have to conduct a war game and thus
analyze a course of action? The army’s doctrinal manuals do not specify an amount of time
to allocate to the war game. However, based on unit experiencesin the field, the army’s
Center for Lessons Learned (CALL) has published example time lines for the MDMP. Those
timelines alocate between one and three hours for the war game [18]. Any simulation must
therefore be marshaled and analyzed within that time frame as well.

Brigade staffs labor under other significant constraints as well. Staffs do not have
trained computer technicians nor network experts available. The computers available are
generally mid-grade personal computers (PCs) at least one generation old. The amount of
available electricity is fixed and cannot support a large computer infrastructure. Even if
power was available, space is at a premium. Brigade headquarters are mobile entities that are
frequently packed, moved and quickly re-established at a new location. The load carrying
capacity of the headquarters vehiclesis fixed. When moved, brigade headquarters must be
fully functional in a matter of hours, usually less than four.

These constraints easily transate into a baseline of requirements that a simulation
must meet if it isto be used in operational war gaming situations. Military officers who are
not computer literate must be able to easily use the ssimulation. At no time must specialy

trained technicians, civilian or military, be required. The simulation must not be static, but
interactive, allowing staffs to stop the action, rewind and explore the course of action in
detail. The scenario must be easily changed on the fly. The simulation must provide this
functionality while meeting the three-hour time constraint for the war game.

In terms of physical requirements the overriding factor isthat it must be hosted on
PCs currently used by brigade staffs. The simulation must run on these machines without
displacing other applications. The only acceptable modifications to these machines to
accommodate the simulation must be inexpensive. Upgrades such as larger hard drives,
improved graphics cards and additional memory are acceptable. The ideal situation would be
asimulation that can run on the latest generation laptop computers or possibly even one of
the new generation of handheld personal assistants.

It must also be remembered that when and where a unit may be committed to combat
is completely unpredictable. For a smulation to be used in the war game it must be able to
integrate new terrain and unit databases in a very short time. For example, the ready brigade
of the 82d Airborne Division could be committed to combat from its barracks at Ft. Bragg,
North Caroling, in less than twenty-four hours. Following brigades can be in action days
later. Clearly, it is essential that any simulation that expects operational use be able to add or
update databases in a matter of hours.

While reviewing the simulations currently fielded it will be instructive to keep these
constraints/requirements in mind. The objective is to find a smulation that can be easily
adapted for field use in the war game, or failing that to conclude that a new simulation is
needed. We will examine three simulations, Janus, Brigade/Battalion Simulation and Corps
Battle Simulation.

1. Janus

Janus is an interactive simulation originally developed at the Lawrence Livermore
National Laboratory to model nuclear effects. Janus has since evolved into three main
versions used extensively by both the combat developments and training communities within
the army [7]. The Janus simulation is an interactive, high-resolution model of ground combat
at the entity level. Entities within the simulation represent individual soldiers, tanks, aircraft

etc. In the training mode, Janus allows staffs at the brigade and battalion level to train
synchronization of the Battlefield Operating Systems (BOS) [8].

The hardware requirements to run Janus are substantial. Janus is a networked over a
thin wire Ethernet. Its standard configuration consists of two sets of Hewlett Packard (HP)
715/50 workstations. Each set consists of eight workstations with a ninth providing host
services. The minimum possible configuration is two workstations, one for each side [8].

Janus is currently undergoing several major upgrades. The HLA Warrior project
involves updating the software architecture and porting the source code from Fortran 77 to
C++. Thetarget host computer for the new system is a Pentium 133 PC [8]. A second
initiative to move Janus to PCsiis currently being fielded to National Guard units. This
version hosts the simulation on notebook computers running the LINUX operating system
[16].

In most fielded configurations, Janus requires some degree of contract civilian
support staff to operate and maintain the simulation. The LINUX version requires the least
support staff overhead. The National Guard units fielding this version receive New
Equipment Training (NET) when fielded then assumes complete responsibility for operating
and maintaining the simulation [16]. At the other extreme, many active duty component
installations have as many as one civilian technician per workstation.

Terrain databases are a another shortcoming of Janus with respect to operational use.
Currently, there are approximately 286 terrain databases ranging in size from 7 by 7
kilometers (km) to 100 by 100 km. Terrain databases require one to two days to develop and
place into play. The databases are developed from digital terrain data provided by the
National Imagery and Mapping Agency (NIMA) [16].

Janus takes a significant amount of time to configure for a specific scenario. Inputting
the units for a brigade size fight can take upwards of three days. Once the smulation has
been populated it can then take an additional two to eight hours to position the units and
assign them their initial orders[16].

Because of these drawbacks, Janusis not a candidate for operational use in the field.
Although Janus can be hosted on PCs and terrain databases can be developed with relative
ease, the time requirements to populate and initialize scenarios is too great. The primary

driver for these long lead times in the basic entity size. Deploying, orienting and assigning

ordersto each individual vehicle in a brigade sized unit and its opposing enemy unit is a
tedious and time consuming task that takes much longer than the three hours the brigade staff

has to conduct the wargame.

2. Brigade/Battalion Battle Smulation (BBS)

BBS was designed to be a Command Post Exercise (CPX) driver for brigade and
battalion staffs. BBS allows commanders to conduct exercises for the training of staff
procedures and integration [10]. BBS uses high-resolution combat models to smulate the
interplay of combat units from single vehicle through brigade in size. The basic level entity is
an individual vehicle. Like Janus, BBS is interactive and models a very wide range of
activities typically found on the modern battlefield including air, ground, and a variety of
logistics operations [11].

Like Janus, the hardware requirements to run BBS are extensive. Five Digital
Equipment Corporation (DEC) Microvax 3100 computers support ten workstationsin the
standard configuration [11]. Each workstation consists of three DEC VT320 terminals, a
printer, an AmigaHD PC for graphic overlays, alaser video disc player for the terrain model
and a 26 inch color monitor [10].

The initial terrain model used in BBS suffered from the same availability problems
Janus terrain does. The estimated cost to develop a new terrain database is in the range of
$150, 000 and requires approximately six months to complete [12]. The latest version of BBS
has significantly improved both the cost and time required to develop new terrain databases.
The laser videodisc format has been replaced with a digital terrain model based on digital
terrain products readily available NIMA. With the digital terrain model a new database can
be developed in as little as three weeks for an average cost of between $12,000 and $15,000
[12].

Can BBS be modified for operationa use by a brigade staff? Undoubtedly the system
could be completely redesigned to meet the requirements but the cost to do so would be high.
Although turn around time for new terrain databases has improved significantly it is still too
dow for operational use. Furthermore, new databases require outside support to develop.
Brigade staffs do not have the time required to do this. To be used operationally terrain
database creation must be simple enough that brigade staffs can build new ones directly from

NIMA products without third party assistance. The hardware requirements for BBS fall
completely outside the ahility of brigade staffs to transport and install. To support such a
system addition vehicles and personnel would have to be added to the unit tables of
organization. In the end, BBS is an excellent training system but its utility ends there.

3. CorpsBattle Smulation (CBS)

CBSisthe army’ s division and corps staff trainer. Like BBS, CBS is primarily used
by the army as a CPX driver. Unlike Janus and BBS, CBS does not employ high-resolution
combat models. Instead, CBS uses an attrition combat model based on Lanchester equations
[13]. The size of the basic entity in CBS is the battalion. CBS models ground combat, rotary
and fixed wing aviation, logistics and special forces[14]. Although CBS istargeted for staffs
at echelons above brigade, most brigade and battalion staff officers have participated in
multiple CBS driven exercises. Because CBS uses a different system of combat modeling,
Lanchester equations versus high-resolution models, it is useful to study its feasibility for use
at lower echelons.

The CBS hardware suite is fairly extensive. CBS is a networked simulation run over a
local or wide area network. The simulation is hosted on a DEC VAX 7620 computer. The
host is networked with multiple MicrovVAX 3100/40 computers each of which support up to
three workstations. A workstation is typically configured with a television monitor, graphics
pad, laser video disc player, graphics generator, printer and three video terminals. A recent
system upgrade has replaced the VAX 3100/40 computers with VAX 3100/85 computers.
The new computer can support up to six workstations. A typical divison level exercise
requires approximately 60 to 75 workstations [17].

CBS requires support staff to setup and run the simulation. To execute a generic
division level simulation, a minimum of four trained techniciansis required per shift. This
figure assumes that all the workstations and the host computer are co-located. The setup time
for just the equipment is approximately two man-hours per workstation. The lead-time to
populate the smulation with the correct mix of units can be aslong as 30 days. However, in
our circumstances it can be assumed that the unit database is already built. Once the unit
database is established it can take upwards of 100 man-hours to position units and assign

missions [17].

The terrain databases for CBS are extremely limited. There are currently seventeen
such databases [15, 17]. The lead-time to develop new terrain databases can be as much as
six months with an average cost between $50,000 and $100,000 [17].

CBS does not appear to be a good candidate for operational use by brigade staffs. The
simulation cannot be hosted on a single PC, terrain databases cannot be easily generated, and
civilian or specialy trained military support staffs are required. Although an aggregate
combat model holds out the potential for reduced computationa requirements, and thus a
higher probability of hosting the simulation on a single machine, CBS is not the answer.

The currently fielded simulations were designed to be training tools for unit
commanders and staffs. These ssimulations are all run from fixed facilities. The army
continues to use these simulations in this role with great success but they are not suitable for
use in afield environment. To develop a simulation for field use it is important to understand
how the army trains unitsin afield environment. The most realistic and demanding training
environments in the army today are found at the army’s Combat Training Centers (CTC).

D. COMBAT TRAINING CENTERS

The army hasthree CTCs, The National Training Center (NTC), Joint Readiness
Training Center (JRTC) and Combat Maneuver Training Center (CMTC). A CTCisa
military installation that provides the most realistic, stressful and intense training
environment possible short of live combat. Brigade and battalion size unitstravel to aCTC to
train in that environment for what is typically a one month period. A unit visit toaCTC is
termed arotation and units typically visit a CTC once every 18 to 24 months.

The CTCs provide awide variety of servicesto the visiting unit. The three most
important are a dedicated, live, free playing opposing force (OPFOR), an instrumented
battlefield and a cadre of Observer/Controllers (OCs).

The OPFOR isaresident unit at a CTC that fights against the visiting unit is a series
of battles during the rotation. The mission of the OPFOR isto decisively defeat the visiting
unit using the weapons and doctrine of an enemy force. For example, in the 1980s, OPFOR
equipment and doctrine closely resembled that of the Soviet Union. It isimportant to
understand that the OPFOR is not a harnessed enemy. OPFOR commanders are given a
mission within a scenario and the freedom to accomplish that mission as they seefit. The

10

only constraint is that of OPFOR doctrine. The purpose of the OPFOR isto provide the
visiting unit a doctrinally correct representation of an enemy unit. To ensure realism the
OPFOR is afree playing, thinking opponent whose sole goal is defeat of the visiting unit.

The instrumented battlefield is critical to successfully capturing the strengths and
weaknesses of the visiting unit. For example, the computer systems at the NTC capture the
movement and engagements of almost all the combat vehicles participating in an battle. After
the battle has ended, it can be replayed on a computer screen and studied in order to discover
what occurred and why. The benefit is obvious: the detailed study of both successes and
faillures alow unitsto correct deficiencies and sustain strengths. The huge amount of data
captured by the instrumentation replaces human perceptions of what happened in a confused
battle situation with facts. The replacement of perception with fact is a significant step
towards objective analysis.

The final service provided to the visiting unit by a CTC isthe cadre of OCs, seasoned
officers who observe the visiting unit plan, prepare and execute each mission. At the NTC,
for example, a group of approximately 400 OCs fans out across all elements of a 3000-man
visiting brigade. The purpose of an OC isto observe the unit as they plan, prepare, and
execute a mission and then provide objective feedback to the unit. The army uses the After
Action Review (AAR) to provide feedback to the visiting unit. The AAR is an objective look
at what happened and why. The OC leads the discussion during an AAR and helps units see
their strengths and weaknesses.

The CTC OCs provide an additional service for the army as a whole. After each
rotation a summary of observed strengths and weaknesses is compiled and sent to the Center
for Army Lessons Learned (CALL). At CALL the observations are catalogued against
specific training tasks and then published for army wide use. Thus, at the unit level, brief
synopsis of observed training trends are available as a resource. The trends presented in these
publications are the latest training data available and represent the wealth of the operational
knowledge and experience found in the OC groups.

E. SUMMARY

The difficult task of synchronizing a brigade combat team requires a high level of
cognitive thought from staff officers. The tools currently available do not help staff officers

11

think through synchronization problems nor to visualize complex time-space-unit capability
relationships. A tool is needed to reduce mental workload on staff officers so that they can
focus on synchronization issues. Employment of a simulation during the war gaming step of
the MDMP would be an example of such atool.

The simulations currently fielded by the army do not measure up to the task at hand.
In general, they cannot be hosted on a single PC, they require specially trained staff to
operate, the time to build a scenario is far too lengthy, and terrain databases take far too long
to generate. The simulations currently fielded by the army were initially fielded in the early
to mid 1980s. PC technology at that time could not support complex combat simulations. As
aresult, the current suite of simulations run on UNIX machines and has outdated methods of
developing terrain databases. These simulations are essentially static, require large numbers
of outdated computers, and use obsolete graphics rendering hardware.

A new simulation is needed to support real time use in the field. The simulation must
be hosted on asingle PC. Terrain databases must be easily generated from digital terrain data
available from NIMA. It must be possible to develop these databases in a matter of hours,
potentially while in route to a new area of operations. Scenario generation must be fast,
preferably less than thirty minutes, and the simulation must run in less than three hours. Of
egual importance is the simulation’ s ease of use. The smulation must not require advanced
computer skills or special training of any nature. Brigade staffs do not have the time or the
personnel to dedicate to operating and maintaining a simulation. 1n short the smulation must
resemble commercial application software found on modern PCs: easy to use and

maintenance free.

F. SUMMARY OF CHAPTERS

Therest of this thesis justifies the requirement for a new simulation and presents a
prototype for the type of simulation required to support wargaming step of the staff planning
process. The remaining chapters of this thesis are organized as follows.

Chapter I1: The Military Decision-Making Process. The MDMP isexplored to a
moderate degree of depth so that the process a new simulation will support is fully
understood.

12

Chapter 111: STAFFSIM. The software component architecture of the simulation
is explained.

Chapter 1V: BattleSim. The software component architecture for the simulation
module of STAFFSIM is developed.

Chapter V: STAFFSIM Implementation. A typical scenario presented to brigades
training at the NTC is presented and run using STAFFSIM. The results of the run
are analyzed against the requirements for a simulation tool presented in earlier
chapters.

Chapter VI: Conclusions. The utility and limiting factors of the new simulation or

discussed. Recommendations for future work are also suggested.

13

14

[1. THE MILITARY DECISION MAKING PROCESS

A. PURPOSE OF THE MDMP

Tactical decision making is an ongoing process. Even while one battle is being
fought, unit staffs are busy planning and preparing for the next. Decisions about ongoing
operations must be undertaken concurrently with decisions and planning for future
operations. The MDMP provides the framework within which the commander and staff
make decisions [3]. Within the MDMP information is collected and logically analyzed
enabling the commander and staff to develop the best possible course of action COA to
achieve the mission [4].

In order to be timely and effective, a staff’ s implementation of the MDMP must be
flexible, comprehensive, continuous, and focused on the future [2]. Flexibility relates
primarily to the time available to complete the process. Staffs must not become rigid; they
must be able to smoothly transition to an abbreviated decision making process when the
situation warrants. Staffs must ensure all factors affecting the mission are carefully
considered. These factors include friendly forces and capabilities, likely enemy forces that
will be encountered and the environment. The staff planning process has no real beginning or
end. Staff estimates are continuously updated as new information becomes available. In turn,
if new information warrants, combat plans and orders are updated as well. Finally, decision
making is about arranging activities in time and space such that future events cause the
enemy to be defeated. “ Statistical record keeping is of little value” [2]. Military decision
making is about making decisions that will influence future events, not keeping an accurate
log of what has or is happening.

B. METHODOLGY

As mentioned in chapter one, the MDMP process has seven steps. mission receipt,
mission analysis, course of action development, course of action analysis, course of action
comparison, course of action approval and orders production. This section will briefly
describe three of these steps; mission analysis, course of action development, and course of
action analysis. This discussion will allow the reader to gain an appreciation for the context

15

in which it is proposed to use smulations as areal time, operational decision support

tool.

1. Mission Analysis

Mission analysis is the framing of the problem at hand, usually atactical mission. The
purpose of mission analysisisto allow the commander and staff to “see the terrain, see the
enemy and see themselves within the context of the higher headquarters fight” [6]. It is
important to understand that mission analysis is not the study of ‘how to’ accomplish a
mission but is instead a study of what must be accomplished, what resources are available,
and what constraints exist. In essence, mission analysis serves to ensure that the problem at
hand is fully understood before potential solutions are developed. During mission analysis,
the staff gathers facts bearing on the mission, makes planning assumptions where gaps in the
available information exist and analyzes the higher commanders mission and intent as given
in the operations order [4].

The end state of mission analysis is the mission statement for the unit. The
commander participates with the staff in these activities as time permits, but as a minimum
he must approve the unit mission statement and then issue planning guidance to the staff [2].
The time available to complete mission analysis at the brigade level generally ranges from
one hour and 45 minutes to three hours [6, 18]. These times include the time required for the

commander to give planning guidance to the staff.

2. Course of Action Development

Having gained a full appreciation for the problem through mission analysis, the staff
must develop potential solutions. The army terms the solution to atactical problem a course
of action. Thus, the next step in the MDMP process is course of action development. A
course of action is a “plan open to the commander that would accomplish the mission” [4].
Depending on time and resources available, the staff develops two to three courses of action
asaminimum. If time is available the staff should develop several courses of action for each
potential enemy course of action [4]. The time available to develop courses of action

generally ranges from one to two hours [6, 18].

16

In its staff manual, FM 101-5, the army defines five qualities of a viable course of
action.

Suitability. It must accomplish the mission and comply with the commander’s guidance.

Feasibility. The unit must have the capability to accomplish the mission in terms of
available time, space and resour ces.

Acceptability. Thetactical or operational advantage gained by executing the COA must
justify the cost in resour ces, especially casualties.

Digtinguishability. Each COA must differ significantly from any others. Significant
differences may result from the use of reserves, different task organizations, day or
night operations or a different scheme of maneuver.

Completeness. It must be a complete mission statement [2].

A completed COA that embodies these qualitiesis not necessarily a detailed and complete
plan of operations. Instead, it isamore general outline that will be fleshed out during course
of action analysis.

The development of a COA is a six-step process. Development begins with an
analysis of force ratios and proceeds through generation of options, arraying forces,
development of a scheme of maneuver, assignment of headquarters and ends with the
drafting of COA statements and sketches. Good COAs position the force for future
operations, allow flexibility to meet unforeseen circumstances and provide the maximum
latitude possible for subordinates to exercise initiative [2].

3. Course of Action Analysis

The purpose of course of action analysisis to identify the single COA developed
above that accomplishes the mission while minimizing casualties and best positions the force
for future operations [2]. COA analysis helps determine how to maximize combat power,
protect the force, and minimize collateral damage. During COA analysis the commander and
staff develop a shared vision of the battle, determine resources required and how to allocate
them, how to focus the intelligence collection effort and identify coordination requirements
in order to produce a synchronized brigade plan of operations[2].

The primary tool used by brigade staffs to analyze COAs is the war game. The war
game is an attempt to visualize how a battle will develop [2]. It stimulates thought about the
COA and provides insights that otherwise might not be understood. The process of war

gaming fleshes out a generalized COA into a plan of operations. In other words, the details of

17

the COA are worked out and synchronized. During the war game the strengths and
weaknesses of each COA are determined [2].

The central framework used by the staff in the war game is a discussion of the battle
in terms of action, reaction and counter-action [2]. For example, if the enemy attacks a
friendly unit, that is an action. How the friendly force responds to that attack is a reaction.
The enemy’ s response to the friendly reaction is then a counter-action. Thus, a COA is
analyzed by a discussion of action/reaction/counter-action at each anticipated critical point in
the battle. The visualization of how actions, reactions and counter-actions will unfold and
their interplay on the battlefield is an entirely mental process for each of the involved staff
officers.

Like mogt parts of the MDMP, the war game has rules that govern its conduct and
stepsthat are followed to executeit. It isinformative to review these rules because they shed
light on how difficult a mental process the war game actually is and they demonstrate the
natural pitfalls that must be avoided if the war game is to be successfully completed.

1. Remain objective, do not allow personality nor the sensing of what the commander
wants to influence decisions. Officers must avoid defending a COA solely on the
grounds that they developed it.

2. Accurately record advantages and disadvantages of each COA as they become
apparent.

3. Continually assess feasihility, acceptability and suitability of the COA. If a COA fails
any of these tests it must be rejected.

4. Avoid drawing premature conclusions and the gathering of facts to support such
conclusions.

5. Avoid comparing one COA with another during the war game. Course of action
comparison occurs only after all COAs have been analyzed [2].

Because the war game makes such high cognitive demands these rules are frequently
violated, thus damaging the validity of the war game and reducing the quality of the analysis.
The first and fourth rules are particularly easy to violate. It is simple human nature to give the
boss what one perceives the boss wants. It isjust as easy to reach a premature conclusion and
then analyze subsequent datain light of that conclusion instead of using that datato reach an

objective conclusion.

18

Remember that during the war game the commander and staff are trying to visualize
the complex time-space relationships and unit interactions of a future battle. Within that
visualization they are simultaneousdly attempting to find shortcomingsin their own and the
enemy’s COA while ensuring that they remain completely objective. It is readily apparent
that the war game places huge cognitive demands on the officers involved. Given the high
mental workload imposed by the war game, how well do unit staffs measure up to the task of

war gaming COAs into synchronized plans of battle?

C. COURSE OF ACTION ANALYSISIN PRACTICE

Perhaps the best source of information on how well units conduct course of action
analysis is the cadre of observer/controllers at the army’s Combat Training Centers (CTC).
The CTC OCs routinely observe unit staffs at the brigade and battalion level conduct the
MDMP to include war gaming. The OCs coach unit staffs to improve their execution of the
MDMP and document observed shortcomings. OCs observe units from all over the army and
from all branches. They seeit all. The army has no other group of officers with as much
direct experience with war gaming, its benefits and its typical pitfalls.

The documented observations of OCs are collected and published for army wide use
by the army’s Center for Army Lessons Learned (CALL) at Fort Leavenworth, Kansas.
CALL publishes alist of observed training deficiencies on aroughly semi-annual basis.
These lists of observed trends provide the best possible insight into how well the army is
conducting the staff planning process. Some observations on COA analysis and war gaming
in particular, as well as the issue of CALL’s Priority Trends in which they appeared are
provided below.

Units have the most difficulty with war gaming. During a rotation most unitsimprove
their performance with the various phases of the M DM P with war gaming being the one
exception [19].

Thewar gaming phase of the Military Decision-M aking Process (MDMP) is habitually a
weakness for the task force staff [19].

War gaming isthe most difficult step in the Military Decision-M aking Process (M DM P)
for unitsto complete successfully. Units have continued to struggle with thistraining
issue for the past 10 years[19].

Wargaming is not univer sally under stood and conducted by staffsto the degree and
level necessary to ensure success [25].

Thegreatest shortfall in the planning processisthe inability to synchronize the task
for ce because of inadequate wargaming [24].

19

Units continue to experience problems during execution that can be traced back to
flawed war gaming during the planning process [23].

While somewhat general in nature these quotes bring to light two important facts.
First, the war game is a significant problem for most unit staffs. Staffs are not conducting the
war game to standard, so course of action analysis suffers as aresult. If course of action
analysisis faulty, decisions based on that analysis are then potentially compromised. Second,
the difficulty with war gaming is not a recent phenomenon but has hamstrung unit staffs for
at least a decade. This problem is not isolated to a single staff or to staffs from a particular
region, but is prevaent throughout the force.

The CTC trends also speak directly to the issue of synchronizing the course of action
during the war game.

Wargaming at the task force level rarely resultsin a synchronized plan at the conclusion
of the wargaming process [20].

The selected COA isnever wargamed sufficiently to achieve effective synchronization
[21, 22].

Products derived from the wargame arerarely useable, doing little to synchronize the
plan or to key the commander to critical tactical decisions during mission execution [21].

If the war game is not producing a synchronized plan it is failing to achieve its

purpose. Further study of the CTC trends sheds some light on why the war game is failing.

Thetask force XO does not facilitate the process (wargaming), and the battle staff loses
itsfocus on the critical eventsthat need to be wargamed and the relationship between
events and the decisive point [19].

Wargaming is not focused and does not synchronize the task force plan [22].

The wargame ends up taking all day or night with only the most aggr essive participants
providing input and the rest of the staff writing their annex without fully synchronizing
their BOS (Battlefield Operating System) [22].

Usually, the S-2 and S-3 fight it out at the map board while the remainder of the staff
observesin silence [23].

Task Force staff’swargaming either getstoo detailed and never finished, or isextremely
superficial [21].

These quotes provide some insight as to why staffs have problems with the war game.
Failure to focus on actual analysis during the war game could be due to many factors. One of
these is almost certainly the heavy cognitive demand the war game makes upon the
participants. It is very easy for a staff officer to be a passive bystander, one who observes the
interplay but is not actually thinking about the plan. A second issue is how personalities can
affect the outcome of war gaming. Often, aggressive, dominant personalities tend to force

20

their opinion on the others. Thisis fine if the most aggressive officers are also alwaysthe
best analysts. Unfortunately, this cannot be guaranteed.

It is readily apparent that the war game is a difficult task for many, if not most, unit
staffs to effectively accomplish. An effective war game is absolutely vital to synchronizing a
combat plan. When a unit enters combat with a flawed plan it cannot achieve its full potential
on the battlefield.

D. POTENTIAL ROLE OF SMULATION IN THE MDMP

The war game is an excellent candidate for introduction of a simulation into a real-
time, operational decision making process. A computer simulation can easily generate the
visualization of time-space-unit capability relationships that will enable staffs to better
synchronize their plans. The training ssimulations discussed in chapter one do exactly that.
These simulations have gained acceptance and are in widespread use as training tools
throughout the army. Unfortunately, they do not meet the requirements for operational use, as
discussed in chapter one.

If the visualization of the interplay of unit activity in time and space can be presented
to staff officersin the war game, then their mental workload can be greatly reduced. The
reduction in cognitive effort will allow staff officers to more fully focus on synchronization
issues. The simulation should serve the added purpose of keeping the war game focused.
Officers will no longer be caught up in trivial details of ‘who shot whom’ but can instead
focus on the bigger picture of how well a COA is synchronized. The next two chapters of this
thesis present a prototype simulation that demonstrates how a simulation could be used as an
analytic tool during the war game.

21

22

1. STAFF SSIMULATION

A. INTRODUCTION

In chapter one the importance the army places on synchronization was established.
The war game is the tool the army uses to synchronize COAs. In chapter two it was
established that the war game generally fails to synchronize a COA. It was proposed that a
simulation could greatly enhance the synchronization through a reduction in mental workload
imposed on staff officers by the war game. Unfortunately, as discussed in chapter one, none
of the simulations currently fielded are suitable for this purpose. Therefore, a simulation that
addresses the needs of brigade staffsin afield environment is needed. Chapter one identified
the following characteristics for such a smulation.

The simulation must be run in a period of one to three hours

The simulation must be easy to use, requiring no special training of any type.
The host for the simulation must be a smaller machine, such as a PC.

The simulation must not require specially trained technical support staff.
New terrain databases must be quickly and easily built.

From these requirements two additional characteristics can be inferred. For the
simulation to be run in less than three hours, scenario initialization, the building of units and
assigning them orders, must be simple and fast. Building and initializing scenarios should be
simple enough that it can be done during COA development and not detract from time
alocated to the war game. Preferably, the time required to initialize a scenario should be less
than thirty minutes.

Requiring no technical support staff has deeper implications. For a simulation to be
useful, it must evolve with conditions on the battlefield. As new weapons and organizations
are deployed, the simulation must have the ability to swiftly incorporate these new entities. A
simulation must therefore be capable of being upgraded by non-technical users. Thisis not
to say the simulation must give users the ability to easily author upgrades, but rather,
upgrades should be constructed in such a manner that users can install them.

Chapter two reviewed the context in which a new simulation could be employed as a

real time decision support tool. Here too, there can be found an implied requirement for the

23

new simulation. The methodology of the war game calls for the battle to be explored in terms
of action/reaction/counter-action at critical points. As the war game proceeds the staff needs
the ability to modify the plan on the fly in order to more fully explore the COA. Thusthe
simulation must be fully interactive, allowing the staff to move forward and backward in
time and quickly analyze several variants of the COA at each critical point.

The requirements enumerated above provide a gross specification for the required
simulation. This thesis presents a prototype simulation named Staff Simulation (STAFFSIM)
that aims to meet these requirements and thus be a useful decision support tool for brigade
staffs. STAFFSIM meets many of the requirements by the adoption of a software component
architecture. The remainder of this chapter will discuss how STAFFSIM is constructed with
software components and the advantages of doing so. The first step isto understand the
advantages of programming with reusable software components.

B. SOFTWARE COMPONENTS

What exactly is a software component? Intuitively a component is something that is
one part of agreater whole. Unfortunately, a more precise definition is needed if the concept

isto be completely understood. One such definition is provided below.

A softwar e component is a unit of compaosition with contractually specified interfaces
and explicit context dependenciesonly. A software component can be deployed
independently and is subject to composition by third parties[26].

This definition implies two fundamental characteristics of software components.

First, independent deployment implies that a component is in fact a stand-alone
entity. In this context stand-alone means that a components internal implementation is
independent of other components. The only external dependencies the component needs to
function properly are defined in the component’s interface. This allows a component to be
used by awide variety of different systems. In order for a system to be built using
components of this nature only the requirements specified in the interface must be met. If a
component depends upon another component in any other fashion it is not capable of
independent deployment. Furthermore, because a component is a unit, it is deployed as a
whole; it can not be split or partially deployed. Just as one of the components of a stereo
system cannot be cut in half and then used, so too with software components; it isan all or
nothing proposition.

24

Components are meant for third party composition [26]. Because a component is
deployed as a single unit, it is fully encapsulated. Thus third parties cannot access a
component’ s internal implementation. Therefore, for a component to be composable by third
parties it must have a detailed user interface. The interface syntactically defines what the
component provides and what it requires.

The use of components has several distinct advantages over object oriented software,
the most obvious being software reuse [26]. In a perfect world the army would have alibrary
of software components that implement approved combat models. Simulation designers
could then use these components off the shelf again and again. With reuse comes refinement
and ultimately software developers could expect off the shelf components to achieve superior
quality. Furthermore, the army could make such a component library open-source, or in other
words, make the source code for each component freely available to developers. If software
components were open-source they could benefit from the intellectual insights and
experiences of a much broader base of developers. Thus combining component architecture
with open source code offers the opportunity for superior quality software that is easily
reusable.

To further understand the benefits of software componentsto STAFFSIM, it is
necessary to understand the different parts of a high-resolution combat simulation. First,
these simulations rely on severa databases. one for terrain, one for weapon to vehicle hit and
kill probahilities, another for weather effects and so forth. They also include sets of
algorithms to handle movement, sensing, detection, and engagements. On top of these
functionalities there is usually a visualization of the simulation, such as a map display with
unit icons. The simulation may also include some type of graphical user interface (GUI) for
interactive play. In currently fielded simulations all of these are inseparable and are thus
“stove-pipe’ solutions.

The functionalities described above could easily be thought of as individual
components. Thus a simulation could be composed of components such as aterrain model, a
weather model, a GUI interface, and the simulation itself which encapsulates all the required
algorithms. When built in this manner the simulation inherits all the advantages of
component design. Furthermore, as more components are written a user could pick and chose

from among several components that provide the same functionality. Thus, users could easily

25

tailor the simulation to their purpose. STAFFSIM aims to provide this kind of composability
in order to meet many of the requirements specified above. Keeping the advantages of

component design in mind, we will now discuss the component architecture of STAFFSIM.

C. STAFFSIM COMPONENTS

1. The Components

STAFFSIM is composed of seven independent software components. BattleSim,
Flora, MessageCenter, SimBuilder, OverlayMaker, ExecutiveOfficer and Draftsman. These
components and their interactions are depicted in figure 3.1. Each of these meets the
definition of a component given above. In STAFFSIM’ s case independence means that each
of these components executes its function completely without dependence upon, or
knowledge of, the other components.

Of STAFFSIM’s seven components four were developed as part of thisthesis, two
were used off the shelf and the last exists in concept only. The two components imported off
the shelf are Flora and MessageCenter. These components are used asis and are integrated
into STAFFSIM using only their defined user interface. The unimplemented component is
Draftsman. A brief description of each component and its purpose follows.

FLORA BATTLESIM

)
) SN

SIMBUILDER DRAFTSMAN EXECUTIVE OVERLAY
\ OFFICER MAKER

|
-

= SIE]

Figure 3.1: STAFFSIM Components

<—

26

The core component of STAFFSIM is the smulation, BattleSim. Its functionis to
provide the combat models that will reduce the cognitive workload imposed by the war
game. BattleSim provides no other services. BattleSim itself provides no visualization of the
simulation or any kind of direct user interface. These services are separate functions that
have nothing to do with simulating a combat action, and are best provided by separate
components.

The next component is Flora. Florais perhaps the best demonstration of the software
component concept. Introduced by Norbert Schrepf [28], Florais a simple map display tool
that is used to visualize the simulation. In addition to displaying maps, Flora can accurately
position unit icons on amap. To do so Flora specifies a message interface. |If Florareceives a
properly formatted message, it can take the information in that message and represent it on
the map.

Florais a good demonstration of the power of a component architecture. Flora does
not know of and does not depend on any other components. Florawas added to STAFFSIM
without modification. Thus Florais a perfect example of software reusability, one of the
advantages of software components discussed above. Figure 3.2 presents a screen shot of
Flora displaying a 1:500,000-scale map.

1
M SeHd 1:250000 |[Locedan 118 HUBHSSE2EE 11651817 W 24 LA N

Figure 3.2: Flora
SimBuilder provides a user interface for unit construction to the simulation.

SimBuilder allows the user to populate the simulation with the appropriate mix of units. Like

27

the rest of the components, SimBuilder is stand-alone. The user specifies the units to build
and SimBuilder sends the appropriate messages. SimBuilder and BattleSim are mutually
exclusive in purpose; they do not depend on each other’s existence in any way. The
SimBuilder user interface is depicted in Figure 3.3.

ExecutiveOfficer provides the user an interface for commanding units. This allows the
user to reach into the simulation and give units orders. On user demand, ExecutiveOfficer
creates orders that are then passed to the simulation where they are executed.
ExecutiveOfficer can be run stand-alone or it can work with Florato provide a more intuitive

point and click interface. Figure 3.4 shows ExecutiveOfficer configured to build movement
ordersfor a unit.

[} SimBuilder 0.0 =] E3
File Build Friendly Unit Build Enermy Unit

Cornpany

Platoon

[24 Company Builder Hi=lE3
- Unit Types - Formations r Unit Characteristics
Unit Designation:
Arrnor i wedge *
: : [UnDesignated
Mechanized Infant wedgeleft . _
Light Infantry wedgeRight ?Drlentamn'
Airborne Infantry echelonlLeft =
AirAssauItInfantr\,r;I echelonRight ;j P!;;;Dm L
r LT Coordinate 1 Build Sectior | Build Plataon |
Pogition: |i1s iNv 3500 [0500
| i i 1 Build Company | Cancel I

Figure 3.3: SmBuilder Displaying the CompanyBuilder Panel

28

Eile Mewe Orders EdiiETiers

- Selected Orders | [Selected Unit
Current Unit
el e ISeIectAUnit
= GrientErders Accept |
Reject I
N CorbatGrders
Cancel |

- Route Parameters

Segment Speed FormﬁE}EB_

Figure 3.4: ExecutiveOfficer Configured to Build Movement Orders

Draftsman is atool for drawing military graphics. It interacts with Florain the same
manner as ExecutiveOfficer and may be operated independently of the other components.
The last component is OverlayMaker, a by-product of Flora. Flora does not have a well-
defined input/output interface; instead Flora can display messages which are objects of a
specified type. Because Flora is used off the shelf alocal adapter is required; Overlay Maker
isthat adapter. OverlayMaker receives messages from other components such as BattleSim
and ExecutiveOfficer. If those messages contain information that should be depicted on the
map display, OverlayMaker builds the correct message objects and forwards them to Flora.
This arrangement implies that OverlayMaker have some knowledge of the internal
implementation of Flora.

The discussion of STAFFSIM components thus far has made the claim that each
component is independent and this is indeed true. In fact, each component can be compiled
and run without the others present. To be effectively composed into an application, however,

some degree of knowledge about, and communication with the other components is required.

29

Just like acombat brigade, STAFFSIM is greater than the sum of its parts. The required
communication is achieved through two distinct mechanisms, the MessageCenter and

component interfaces.

2. Component Communication

The real utility of software componentsis the ability to combine them into a system.
In order for a component to be part of such a system it must be able to communicate with the
other components in the system. Simple communication however, is not good enough. A
component must be able to communicate without losing its ability to stand-alone or to be
composed into other, completely different, systems. STAFFSIM components meet this
requirement by structuring their communications with component interfaces and by passing
messages through the MessageCenter.

The MessageCenter[28] resembles a multicast | P address found in computer
networks. System components send all their messages to the MessageCenter. When the
MessageCenter receives a message it simply re-broadcasts it to all registered listeners. The
listeners then act on the message if appropriate, or ignore it otherwise.

The MessageCenter de-couples software components. The MessageCenter relieves
each component from the requirement of holding a reference to all other components. Thus
each component is completely unaware of the existence of other components. The
MessageCenter itself is not necessarily aware of all the components either. A component that
only sends messages does not register with the MessageCenter and thus the MessageCenter is
unaware of its presence. Even registered components are “known” in a very generic sense.
The MessageCenter only knows that registered components have a method named
handleNewMessage(ModEvent event) to which it forwards all messages it receives.

This architecture implies two modes of component operation. Components wishing to
receive message traffic smply register their existence with the MessageCenter. They can
then send and receive message traffic. Components that do no wish to receive message traffic
simply do not register. If a component does not register it does not receive messages.
However, it can still send messages, since registration is not required to be a message sender.

The format of messages in this system is extremely simple. A message is a Java
object with only two fields. Thefirst is areference to the message originator or source, of

30

type Object. The second field is the message itself, also a Java object. Since all Java objects
are a subclass of class Object, any object can serve as a message or a message sender. The
message can be as simple as the String ‘HELLO’ or as complex as a Hash Table filled with
Vectors of combat units. The flexibility of this arrangement alows component developers
much freedom in structuring their component interfaces.

The second piece of the communication infrastructure is the component interface.
Schrepf’ s MessageCenter allows components to communicate with great ease. However, the
real question is whether one component can interpret the meaning of another’s message. It is
easy to be abstract but at some point the details of syntax must be defined. Message syntax is
defined in the component interface. A component interface is a collection of Java interfaces.
Each of the Java interfaces in the component interface defines one message format. For
example, BattleSims component interface might contain separate Java interfaces defining
message formats for new units, movement orders or orient orders. Figure 3.5 illustrates this
concept.

The software component in figure 3.5 has a single entry point for messages. When a
message is received it is examined to determine if it meets the requirements for any of the
message interfaces. In this example, the message is first examined to determine if it meets
the requirements of the new unit interface. If the requirements for a new unit are met, the
message is read and the appropriate new unit is created. If the message is not a new unit
message it is examined against the orient order and move order interfacesin turn. If the
message does not implement any of the interfacesit is discarded.

If a component wishes to send a message that another component can understand it
simply instantiates a message object that implements one of the message receivers message
interfaces. This arrangement promotes a great degree of flexibility. Programmers can build
message objects that suit their specific needs. The only requirement is for the message
interface to be implemented by the message object. Thus two programmers can encapsulate
the same message information in two entirely different message objects. On the receiving
side both of these messages will be understood in the same way.

31

Softwar e Component

ﬁ Component Interface
Read
Message
Y Implements
New Unit
Interface
A 4
Respond to
Message

Implements
Orient Order
Interface

Message
Received

End

Implements
Move Order
Interface

Discard

Message <

— P Message implements a known interface and thus can be read
——p Message does not implement a know interface, cannot be read

Figure 3.5: Component Interface Flow Chart Diagram

Figure 3.6 illustrates this concept. Components A and B both desire to send
component C a message instructing C to change the state of a database. In order for C to
understand the message both A and B must compose their message as an object that
implements component C’s change database interface. Observe however, that A and B
instantiate the required message objects but that these objects are not the same. In fact they
are of completely different types. Each one is suited to its own needs but can still be
interpreted by C.

32

Message Object A

COMPONENT A
(Sender)

COMPONENT B

Datal, Data2, Data3 (Sender)

Method1()
Method2()
MethodA ()

M essage Object B

Data3, Datad

COMPONENT C /

(Receiver)

Method1()
Method2()

I nterface

Method1()
Method2()

C &

Figure 3.6: STAFFSIM Component Communication

D. SUMMARY

STAFFSIM is an interactive simulation composed from seven independent software
components. Each component is a stand-alone application. When linked together through the
MessageCenter the components form a complete smulation even though each individual
component knows very little about its peers. Composition of the smulation from reusable
components gives the simulation developer the ability to pick and choose from the highest
guality components when building the smulation. It also allows the simulation to be quickly
upgraded. The only real requirements for a new or even completely rewritten component to
operate as part of the smulation are the component interfaces. Hence the system can be
quickly upgraded with improved components that are easily added to the simulation by the
user. Thus, the component architecture of STAFFSIM supports the aforementioned

33

requirements for a new simulation. The core component of STAFFSIM is BattleSim.
BattleSim itself is constructed from software components and is discussed in the next

chapter.

IV. BATTLE SSMULATION

A. INTRODUCTION

BattleSim provides the STAFFSIM package with a Discrete Event Simulation (DES)
of combat between military vehicles. Like STAFFSIM, BattleSim utilizes a component
model. However, the context of the components is significantly different. Each STAFFSIM
component is designed to provide a single, basic functionality to the simulation. A BattleSim
component however, is designed to provide a single functionality to an entity within the
simulation. For example, in STAFFSIM, SimBuilder provides the simulation the
functionality of building units. In BattleSim, a component such as BasicMover provides an
entity in the simulation the ability to move.

BattleSim adopts the component model introduced by Arent Arntzen in histhesis,
“Software Components for Air Defense Planning”[27]. Arntzen's concept calls for a
component to provide an entity with basic services to facilitate the easy composition of
components within a container. For example, to model a vehicle such as atank, a group of
components is added to a container. Each component provides a separate functionality such
as moving, sensing, or shooting. When components are added to a container in Arntzen's
system, the container takes on all the properties of the added components. Thus, the container
becomes a tank. Figure 4.1 depicts this arrangement.

Vehicle (Container)

Basic Basic Basic

Mover Sensor Weapon
(component) (component) (component)

Moving Sensing Shooting

Figure 4.1: Component composition Within a Container

In the tank example, the only component that has a physical location and that can
move is the BasicMover. Because the container, or tank, takes on the properties of al of its

35

components, the tank has a location and can move. Thus, the tank delegates its movement
propertiesto it's BasicMover component. When a sensor is added to the container the sensor
getsitslocation from the container, thus from the BasicMover. Furthermore, when the
BasicMover moves, the container and all of its components move as well.

It isimportant to understand that within this arrangement components do not provide
overlapping functionality. The BasicMover can move but can not sense and shoot. The
BasicSensor can sense but not move and shoot. The Vehicle, however, can move, sense, and
shoot.

The functionality that allows composition through containers is embedded within
Arntzen's BascModComponent. The functionality of moving, sensing and shooting is
included in BasicMover, BasicSensor and Basic\Weapon. These components build on
BasicModComponent and are the basic building blocks BattleSim. These components are
discussed in detail below.

In addition to components that are used to build entities such as military vehicles
BattleSim has a second fundamental type of component. These components broker the
interactions between opposing entities and between entities and the environment. The use of
‘broker’ or neutral entities has the primary advantage of ensuring opposing entities obtain
only as much information about each other as their sensor capabilities and the environment
permit.

In BattleSim the ‘broker’ entities are the Registrar and the Mediator. These
components handle such tasks as determining the outcome of engagements, deciding who
can see whom, determining line of sight and so on. The general division of components and
their functionality is shown in figure 4.2. The following section describes the basic
components in detail and explains their interactions with the ‘ broker’ components.

Broker Components Player Components
Registrar - BasicMover
Mediator - BasicSensor

- BasicWeapon
FireControl

Figure4.2: BattleSim Component Types

36

B. BUILDING BLOCK COMPONENT MODELS

There are four interfaces that define the component framework of BattleSim: Mover,
Sensor, Weapon, and FireDirection. Each of these interfaces has a default implementation,
BasicMover, BasicSensor, BasicWeapon and FireControl respectively. The following
sections discuss these components and the combat models they implement.

1. Mover and BasicM over

The Mover interface specifies the baseline functionality required for a component to
provide the position and movement functions within BattleSim. The actual functionality is
provided in the BasicMover component. BasicMover extends BasicModComponent and thus
is composable by container. In order to provide the functionality specified in the Mover
interface it isimplied that BasicMover must model movement in some manner. BasicMover
models movement in a smooth linear fashion called a smooth linear mover [29].

The event graph for the smooth linear mover is shown in Figure 4.3. When a vehicle
desires to move it schedules a SartMove event. When the StartMove event takes place an
EndMove event is scheduled at atime in the future equal to the time required to complete the
move.

The smooth linear model is depicted graphically in Figure 4.4. The smooth linear
mover is simple. When the mover begins to move it instantaneously accelerates to cruising
velocity. During the move it maintains a constant cruising velocity. When the end point of
the move is reached it instantaneously decelerates to zero velocity. In effect, the smooth
linear mover does not model acceleration.

Although the movement model is fairly general it will certainly not suit all needs.
Changing the movement model is a relatively simple task. To change the movement model
developers must simply sub-class BasicMover or re-implement the Mover interface. As
stated above, BasicMover provides all the functionality required to operate as a Mover within
BattleSim. When the subclass is written it must overwrite the methods listed below.

37

Where t,, isthe time required to complete the move

Figure 4.3: Event Graph Snippet for Movement Event Scheduling

calcMoveTime() Calculates the time require to complete the move

getCurrentPos() Calculates and returns the vehicles current position

calcMoveDistance() Calculates and returns the distance to be moved
The code within these functions implements the algorithms for the movement model.
Overwriting these functions in the sub-class allows the introduction a new movement model
An example of a different movement model is one that provides for constant linear
acceleration. Although BattleSim does not currently implement a constant linear accelerator
the concept is depicted graphically alongside the smooth linear mover in Figure 4.4.

V. = Cruise Velocity
A A Ten = Start Move Time
Velocity Velocity Tem = End Move Time
V| ———————— Ve / \
< > < >
¥ Tsm Tem Time v Tem Tem Time
Smooth Linear M over Linear Acceleration Mover

Figure4.4 Smooth Linear and Linear Acceleration Movement Models

2. Sensor and BasicSensor

The sensing and detecting models in BattleSim are more complicated than the
movement model. Before the sensing model is explored in detall it is important to understand

the role of some of the other components in the system. Thus far we have discussed the

38

construction of avehicle by adding various components to a container. The vehicle
constructed in this manner has no information about any other vehicles in the simulation
other than that provided by any sensors on the vehicle. The vehicle does not know where
other vehicles are until the sensor detects them, but the sensor cannot detect them because it
does not know where they are. The simulation is thusin a proverbial ‘catch 22’ situation.

This problem is solved with the introduction of the Registrar. The Registrar isa
singleton component (i.e. each instance of BattleSim has only one registrar). The purpose of
the registrar istwo-fold. First, the registrar monitors all the vehicles in the smulation and
begins the detection sequence when one vehicle can potentially detect another. The detection
sequence determines when vehicles detect each other’ s presence based on the environment
and the capabhilities of the each vehicle’' s sensors.

The second function of the Registrar isto instantiate a Mediator to handle the
resolution of the detection sequence. Once the detection sequence has begun the Registrar
has completed itstask. One Mediator is instantiated for each detection sequence that occurs.
Once instantiated, the Mediator handles al interactions between two vehicles. The Mediator,
however, is a one way component. The Mediator handles a detection sequence for a vehicle
pairing where one vehicle is the detecting vehicle and the other is the detected vehicle. A
second Mediator handles interactions in the opposite direction. Thisis a different detection

sequence and is handled by a different Mediator. Figure 4.5 illustrates this concept.

MEDIATOR
REGISTRAR
MEDIATOR

v SMR
K
V|
K

Vehicle Two

Vehicle One SMR = Sensor Max Range
FOV = Field Of View

Figure4.5: Interplay of Vehicle Sensors, the Registrar and the Mediators

39

In Figure 4.5 the action begins when vehicle one publishes a SartMove event. The
Registrar listens for, and hears the StartMove from vehicle one and makes a series of
decisions. First, the Registrar determines if vehicle two will enter the maximum range circle
of vehicle one’s sensor. If vehicle two will enter the maximum range then the Registrar
determines when and schedules an EnterRange event for that time. The EnterRange event is
the beginning of the detection sequence. The Registrar will also instantiate a mediator to
handle the rest of this detection sequence. For this newly instantiated mediator, vehicle oneis
the detecting vehicle and vehicle two is the detected vehicle. The Registrar will also
determine if vehicle one will enter the maximum range of vehicle two during its move. If so,
a second mediator is established. For this mediator the detecting vehicle would be vehicle
two while the detected vehicle would be vehicle one.

The detection sequence mentioned above begins when a vehicle publishes a
SartMove event. The SartMove event may or may not cause the moving vehicle to enter into
the sensor range of another vehicle. If the moving vehicle will enter the sensor range of
another vehicle, an EnterRange event is scheduled to occur at the time of entry. An
ExitRange event may be scheduled as well. The ExitRange event is not scheduled in cases
where the moving vehicle stops within the sensor range of the detecting vehicle.

Once one vehicle has entered the sensor range of another, the Mediator takes over.
The publishing of an EnterRange event causes the Mediator to determine if the moving
vehicle will enter the field of view (FOV) of the sensing vehicle. If it does, then EnterFOV
and potentially ExitFOV events are scheduled. When the EnterFOV event takes place the
Mediator checks for entry into the sensing vehicles line of sight (LOS). If the target vehicle
will enter the sensing vehicles LOS then EnterLOS and potentially ExitLOS events are
scheduled as well. Once one vehicle has entered another’s LOS it is time to calculate when
detection will take place.

The mediator determines time to detection based on the detection algorithms resident
in the detecting sensor. Detection in BattleSim means that one vehicle has seen another but
cannot necessarily see it well enough to determine what or who, it is. When a Detection event
takes place the Mediator schedules a Classify event. Classify means that the detecting vehicle
can determine what type of vehicle it is observing in terms of tracked vehicle or wheeled
vehicle or fixed position. Classification is an intermediate step on the road to being able to

40

fully identify what has been observed. When the Classify event occurs the Mediator
schedules an Identify event. The Identify event represents full knowledge of the detected
vehicle to include status as friend or foe and vehicle nomenclature such as T-80 or
HMMWV . The detecting sensor once again provides the times to classify and identify. The
algorithms to compute these times are similar to those for the time to detection.

Figure 4.6 depicts the event graph for the detection sequence. The event graph shown
inthe figure is a scaled back representation. Due to the complexity of event scheduling and
interrupting a full event graph would be impossible to show on a single sheet of paper. The
graph shown in figure 4.6 allows the reader to grasp the basic flow of event scheduling
without becoming inextricably mired in detail.

A—p B A schedules B in all circumstances

A —2—> B A schedules B if the correct conditions exist

Figure 4.6: Event Graph of the Detection Sequence

Figure 4.7 shows an example of what the detection sequence means to entitiesin the
simulation. The circle in figure 4.7 represents the maximum range of a vehicles sensor. The
white pie dlice is the sensor’ s field of view. In BattleSim this field of view is not necessarily
the sensor’ s physical field of view but is usually a sensor’s assigned sector of search. The
gray areas within the field of view are dead space, areas the sensor cannot see into due to an
obstruction of some type.

41

The action starts when vehicle A startsto move. Vehicle A is the detected or target
vehicle while vehicle B is the sensing vehicle. When vehicle A enters the sensor range of
vehicle B an EnterRange event is published. At thistime A iswithin the sensor range of B
but is not within the area that B’s sensor is searching. When A enters the search area of B an
EnterFOV event is published. In this particular example as A enters B’ s field of view it is
also in B’sline of sight (LOS), thus an EnterLOS event is published at this point as well.
Once A has entered B’s LOS, detection is possible. Therefore at some point further along

Exit Line Of Sight

Exit Range

Start Move

Outside Vehicle Field of View

Figure 4.7: Detection Sequence M odel

the move path B will detect A. Classify and Identify events follow. Inthisexample A enters
dead space and thus an ExitLOS event occurs. When A emerges from the dead space it is
once again entering B’s LOS and thus the sequence of events repeats itself, circumstances
permitting. Finally, A exits the sensor range of B prompting an ExitRange event.

Like BasicMover the detection model provided in BasicSensor may easily be replaced
with a more sophisticated one. The model that is easily replaced is the one that actually
determines when one vehicle detects another. Aswith BasicMover sub-classing BasicSensor
guarantees the new model will work within the system. However, when sub-classing
BasicSensor the following methods must be overwritten.

42

getTimeToDetection(), Calculatestime until sensor detects target vehicle
getTimeToClassify(), Calculatestime from detection until target is classified
getTimeToldentify(), Calculates time from classification until identification
getRightLimit(), Returns sensors right limit azimuth

getLeftLimit, Returns sensors left limit azimuth

inFieldOfView(), Determinesif passed location is within the sensors FOV

The code within these methods is the implementation of the detection algorithm.

3. Weapon and BasicWeapon

Of the four basic building blocks BasicWeapon is the simplest. The only functionality
encompassed in BasicWeapon is the ability to shoot. Included within the ability to shoot is
the concept of ammunition availability. An integral part of each weapon is the ammunition
on hand for the weapon to fire. When the ammunition is expended, the weapon will no longer
fire.

Firing a weapon is a much more involved process than simply loading it and pulling
the trigger. Combat scenarios usually present decisions such as what target to shoot at or
simply deciding whether or not to shoot. To help the soldiers manning the weapons make
smart decisions under the stress of battle the army has developed fire control measures.
These control measures include trigger lines, sectors of fire and weapon control status. These
concepts are implemented in BattleSim but not in Basic\Weapon. A Basic\Weapon simply
shoots when it istold to do so.

The functionality that BasicWeapon does not implement is obviously very important.
The decision of when to shoot and at whom to shoot requires a level of intelligence not
normally embedded within weapons themselves. The capability to make these decisionsis
found in the weapons operator or in an automated fire control system. In BattleSim this

functionality resides in FireControl, which the next section discusses in detall.

4. FireControl

FireControl is the last of the basic building block components. A FireControl
component is added to a container representing a vehicle in the same manner as other
components. The FireControl is essentially the vehicle's brain, deciding whom to engage and

43

when. The FireControl links the sensor to the weapon thus creating a weapon system. In
order to control firesin a manner resembling a military vehicle FireControl implements
many of the fire control measures found in military fire planning manuals.

Figure 4.8 shows the event graph for shooting at atarget. The Detect, Classify and
|dentify events are lifted from the sensing and detection event graph shown in figure 4.6.
Shooting is obvioudly directly linked to sensing. A target cannot be shot until it is detected.
Depending upon the weapon control status, a Detect, Classify or Identify event can trigger a
NewTarget event. If the weapon control status is restrictive then a NewTarget event will not
be generated until the target vehicle is positively identified. I1n a permissive environment a
NewTarget event istriggered as soon as atarget is detected.

A NewTarget event ultimately results in the addition of the detected vehicle to the
FireControls target queue. Once added to the target queue the detected vehicle will be
engaged. Once the detected vehicle moves to the top of the queue the FireControl orders a
weapon to shoot at it. Thisis represented by a Fire event. At this point the detected vehicle
is removed from the target queue regardless of the outcome of the engagement. This is done
because neither the fire control nor the weapon can assess the results of the engagement.
Therefore, from the FireControls perspective the target has been handled.

The result of an engagement is received by the shooting platform viaits sensor. The
Mediator determines the result of the engagement and informs the sensor. If the shot was a
miss, the sensor notifies the FireControl and the detected vehicle is re-added to the target
gueue. If the shot hit, no further action is required by the FireControl.

Figure 4.8 shows the event graph for the engagement sequence. If the weapon control
status is weapons free then the Detect event causes a NewTarget event to be scheduled. At
the other end of the spectrum if the weapon control status is weapons hold, then a NewTarget
event will not be scheduled until the target is positively identified as signified by a Detect
event in the figure.

New
Target

i

Figure 4.8. Event Graph of the Engagement Sequence

The event graph fails to depict the full detail of the FireControls decision making. In
order to give the reader a better understanding of the complexity of the decision a flow
diagram of the algorithm is provided as Figure 4.9. The decision cycle begins when the
FireControl receives notification of a new target. If the new target is in sector, the current
weapon control status (WCS) for in sector targetsis checked. If the WCS allows engagement,
the FireControl checksto ensure the new target can be ranged and isinside the user set
trigger line. If the target isin range and within the trigger line then it is added to the target
gueue. Once the target is added to the queue, the FireControl pops the first target off the
gueue and orders a weapon to shoot at it. When the firing weapon receives the order to shoot
it checks to ensure ammunition is available. If ammunition is available a shot is fired and the
FireControl pops the next target off the queue. Targets are prioritized in the queue based on
the danger they pose to the detecting vehicle. The most dangerous targets are awaysfirst in

the queue.

45

Start

v

p| New Target Event |«

No Does WCS No Isthe new
allow 00S <+— target in the
engagement? Weapons sector?

Yes

DoesWCS No

dlow anlS
engagement?

Yes
Istarget in Will target
range or enter range or
trigger? tigger?
Yes No
h 4
Yes Will target Order weapon
enter sector? to shoot
No v
Isammunition
available?
Legend: « «
WCS Weapon Control Status
IS In Sector

00s Out Of Sector
Trigger Trigger Line, point at which firing commences

Figure 4.9: FireControl Decision Flow Chart

46

C. COMPONENT CONTAINERS

Containers are the mechanism by which components are composed into complex
entities. STAFFSIM uses two types of containers. The first type allows the composition of
components into vehicles using Arntzen’s ModContainer. The second allows the aggregation
of vehicles into units. In this case the container, or unit, should not inherit the properties of its
component vehicles and thus ModContainer is not used. The following sections describe
these two approaches to component containers.

1. Vehicles

The Vehicle interface is the primary container in BattleSim. When a component is
added to a Vehicle container the container takes on all of its properties. A property in this
context is any method that meets the following criteria.

The method name begins with the word ‘get’.

The method has no arguments.

The method has a non-void return type.
These criteria are the same as those used by Java Beans. For example, suppose a component
with the method public double getMaximumSpeed() is added to a vehicle named tankl. The
vehicle now has a property named maximumSpeed. This property is accessed with the
following call.

tank1.getProperty(* maximumSpeed”);

Thus tankl now has a property called maximum speed. The functionality to make this
happen is al included in Arntzen's BascModComponent and BasicModContainer classes. In
the example above, the container class must either sub-class BasicModContainer or
implement the ModContainer interface. The component added to the container must extend
BasicModComponent or implement the ModComponent interface.

Arntzen’swork allows a container to assume the properties of components that are
added to it. Significant benefits could be gained if a component in the container could also
assume the properties of al the other components. Arntzen's component system currently
does not support this functionality. To illustrate these concepts consider the following
situation.

47

Suppose a Sensor is added to a Vehicle. The sensor’sjob is to detect targets and
report that information to the vehicle. Part of detecting atarget is being able to report where
the target is. To do this the sensor must first know its own position. As discussed above, the
sensor has no concept of its own position. However, the vehicle does know its position from
its Mover component. Therefore, the problem is one of access to information that is already
available. The Sensor cannot get its position from the Mover because the Sensor does not
even know the Mover exists.

There is a simple solution to this problem. In BattleSim each component has a parent
property. This property is areference to the container in which the component resides. Thus,
for the Sensor to get itslocation it simply queries its parent. Once the Sensor knows its
location it can accurately report the position of targets it detects.

The benefits of this arrangement are two-fold. First, the amount of code is
significantly reduced. Only one component must incorporate a specific property. Other
components that need this property can get it from their parent. Thus, there is a single source
for each property. The second benefit flows directly from single sourcing of properties.
Single sourcing eliminates potentia conflicts between components that would otherwise
implement the same functionality. For example, what happens if the Sensor and the Mover
both implement a position property? The potential problem arises that although in a physical
sense these components are located in the same spot their position properties might not be the
same. The natural question is then, who is right? How does the vehicle determine who is
right? The introduction of the parent property eliminates this source of potential errors.

The vehicle container takes an additional task upon itself. When aresident component
publishes an event, the container intercepts that event and changes the source of the event to
be the container. The purpose here issimple. In order to appear to other containers as single
entity events originating in the container must be sourced as if they originated from the
container, not aresident component. Thus containers intercept their component events and
change the source field from the component to the container.

The interception of resident component events has an associated disadvantage.
Messages inbound to a component are sent to the components parent container instead. The
container must then interpret the message and decide which component it isfor. The

introduction of the code required doing this limits the reusability of the container.

48

Consider the following example. A container designed to model a combat vehicle
might have resident components that represent sensors, weapons and a mover. While this
container could then be used to represent atank, a self-propelled artillery piece or even a
navy ship (depending upon the components) it could not represent a machine tool on a
factory floor. The machine tool might have components such as a control unit, spindle, and
tool tips. The vehicle container could in fact include these components but could not handle
their message traffic because it does not contain the code to route inbound messages to the

proper componen.

2. Units

The purpose of the Unit interface isto alow aggregation of entities. Military
organizations typically group men or vehicles into units and then units into larger units and
so on. The Unit interface models this military hierarchy. Grouping entities into units also
allowsthe user to interface with a single unit as opposed to ten to twenty vehicles that
composed that unit.

For example, in Janus for a user to order ten vehicles to move from point A to point B
the user must individually order each unit, a tedious and needlessly time-consuming task. A
second approach available in Janus is to command just one unit to make the move and have
the other nine mirror the movement of the first. This approach is certainly more time efficient
but results in the units moving in a manner that poorly models the behavior of military units.
BattleSim offers a different approach. The Unit interface allows the user to order a Unit to
move and the container ensures that the vehicles move in a manner consistent with military
movement techniques.

The purpose of the Vehicle interface is to allow the grouping of components to form a
single entity. Obvioudly, the purpose of the Unit interface is significantly different. Because a
unit has no need to assume the properties of its component vehicles nor to intercept and re-
source message traffic a different aggregation technique is used. The technique is much
simpler and requires much less overhead. A unit is simply a collection of vehicles. The
functionality provided by BascModComponent and ModContainer are not needed and
therefore they are not used.

49

As an example consider BattleSim's Platoon class which implements Unit. To build a
platoon vehicles are added to the platoon object up to alimit of six. The platoon object
monitors message traffic from its component vehicles but does not re-source the messages. In
BattleSim the basic entity is a single vehicle. Therefore the Registrar and the Mediators
know and understand how to interact with vehicles but not with units. Thus the source for all
messages must be a vehicle, the Registrar or a Mediator. The power provided by aggregating
vehiclesinto unitsis speed of user interface as discussed above.

D. COMPONENT INTERACTIONS

1. Introduction

A variety of BattleSim components have been introduced and their purpose discussed.
At this point is useful to take a step back and review primary players and how they fit into
the bigger picture of a BattleSim ssmulation. Remember that BattleSim ssimulates the fighting
between two brigade sized combat units. Within the simulation the primary entity isa single
vehicle. Thus BattleSim models the brigade level fight as the interaction of hundreds of
combat vehicles. Figure 4.10 diagrams this concept.

Registrar '

M-1

Vehicle 3
Vehicle 1 M-2

M-3

Vehicle 2

Figure 4.10: BattleSim Component Interactions

Figure 4.10 can be considered to be a snapshot in time of a BattleSim simulation. The
basic entities in play are vehicles, mediators and the registrar. The Registrar and the
Mediators are neutral entities while vehicles two and three oppose vehicle one. The diagram

50

depicts three mediators. M-1 is handling the interactions between vehicles one and three
where vehicle one is the sensing vehicle and vehicle three is the target vehicle. M-2 isaso
handling interactions between vehicles one and three. In this case however the sensing and
target roles are reversed. M-3 is handling interactions between vehicles one and two with
vehicle one the sensing vehicle and vehicle two the target vehicle. Vehicle one has not
entered sensor range of vehicle two and therefore no mediator has been instantiated to handle
interactions in the reverse direction.

The interaction of these entities results in a battle. Vehicles move, sense, shoot, kill or
are killed. Each of these discrete activities is represented in BattleSim by one or more events.
Events are the primary means of inter-entity communication. When an event occurs the
source entity notifies other interested entities. For example, if vehicle one in Figure 4.10 fires
at vehicle three, vehicle one schedules a Fire event. When the Fire event takes place vehicle
one notifies al other interested entities that it isfiring at vehicle three. One of these
interested entities is Mediator one. When Mediator one is notified of the Fire event it decides
the outcome of the engagement. In this way publishing an event is very much like passing a
message. In this case however, each message represents a physical occurrence on the
battlefield at a specific time. The event passing mechanisms of BattleSim are discussed in
depth below.

2. Event Handling

a. Listeners

BattleSim adopts the listener pattern developed as part of Arntzen's Modkit
component framework. Modkit listeners are very similar to Java Bean's listeners. The basic
concept isthat any entity that wishes to receive events published by another entity smply
registersto do so. Each entity keeps alist of registered listeners. When an entity publishes an
event it notifies all of its registered listeners. Thus listeners are able to track what an entity is
doing and respond to another entities actions.

In BattleSim it is very important to place restrictions on who can listen to
whom. Recall that a mediator handles all interactions between two entities. The mediator
thus listens to both of the entities. The entities do not listen to the mediator nor are they
allowed to listen to each other.

51

In aphysical sense these restrictions are intuitive. It is unrealistic for an entity
to receive the events of an enemy entity. Receiving such information implies that an entity
knows precisely what an enemy entity is doing under all circumstances and at all times.
Essentially this state of affairs would be akin to riding in the enemy vehicle observing al of
its activities and listening to all of its communications. Thus, opposing entities are not
allowed to register as listeners to each other. Entities can not register as listenersto the
registrar or the mediators as well. The registrar and mediator publish information in their
events that is meant for one side or the other but not both. For example, if one vehicle enters
another’s LOS the mediator publishes and Enter LOS event. Only the detecting vehicle
receives this information. The detected vehicle has no way of knowing when it enters or exits
another vehicles LOS. Therefore, entities, or vehicles, cannot register as a listener to the
Registrar or the Mediators.

The Registrar has no listening restrictions; it listens to all the message traffic
outbound from vehicles. This enables the Registrar to initiate the detection sequence as
required. The mediators are restricted in who they listen to. Mediators listen to the Registrar
and the components they mediate. There is no real need for mediatorsto listen to each other
or to other vehicles. If the Mediators listened to vehicles they do not mediate they would
have to filter their inbound message traffic to eliminate messages that do not concern them.
This would introduce wasteful inefficiencies in the code.

b. Event Classes

Events in BattleSim are objects. When a listener is notified of an event the
listener receives areference to the event object. Thus the listener has accessto all the
information in the event. The information passed in eventsiis critical to the smulation.
Entities use the information they receive via events to properly respond to the event. For
example, a SartMove event contains who started moving, how fast they are moving and
where they are going. When the Registrar receives this event it uses the information to
determine if and when the moving vehicle will enter sensor range of other entities.

Figure 4.11 shows the BattleSim event hierarchy. The baseline event is the
BasicModEvent introduced in Modkit. BasicModEvent provides the basic event functionality
but very little information. GenericModEvent expands upon BasicModEvent but provides no

information that is not general to all events. The last tier of events provides the specific

52

information required for entities to properly react to an event. Listed under thistier are the
specific events that are passed between entities.

c. Event Scheduling

BattleSim is an event driven simulation; thus each event has a specific time
that it will take place. When an event takes place, the simulation clock is advanced to that
event’s time. Unfortunately, the Modkit component architecture upon which BattleSim is
constructed has no notion of time or of a continuously advancing clock. In order to schedule

events and have them occur at a future time this shortcoming must be addressed.

BasicModEvent

GenericModEvent

MoveEvent EnterExitEvent EngageEvent

SartMove - EnterRange - NewTarget
EndMove - ExitRange - Fire
- EnterFOV

ExitFOV

EnterLOS

ExitLOS

Detect

Classify

[dentify

Figure4.11: BattleSim Event Hierarchy

To handle event scheduling BattleSim uses the event scheduling facilities
provided in Simkit [30]. Simkit has built-in event scheduling facilities and a clean interface
for scheduling and executing events. The definition of an event in Simkit is provided in the
SimEvent interface. Simkit provides a SimEvent abstract factory that creates SimEvents from
parameters provided by the user. To schedule an event the user provides the parametersto the
abstract factory and receives a SimEvent in return. The SimEvent is then passed to the Simkit
Scheduler where it is added to an event queue. When the event takes place the Simkit
Scheduler notifies the originating object via a callback. The process of scheduling an event is
depicted in Figure 4.12.

53

The primary problem encountered when scheduling events is that Simkit
understands and handles S mEvents while BattleSim uses ModEvents. The solution to this
problem is the SmkitAdapter class. The SmkitAdapter takes a ModEvent, convertsit to a
SmEvent, and sends that SmEvent to Simkit for scheduling. When the Simkit scheduler
determines that the event has occurred it sendsit back to the SmkitAdapter. The adapter
converts the SmEvent back into aModEvent and sends it to the originating component.
When the originating component receives the event it understands that the event is taking
place now and responds accordingly. Part of the originating component’s response is to

notify its listeners.

Originating Simkit- Simkit
Component [®| Adapter [P Scheduler

©l0)) Ol0h ©

L egend
Event is built and passed to the SimkitAdapter

<—ﬁ> <i> @ . The SimkitAdapter converts event and passesit to
the scheduler

Listeners 3. The Scheduler schedules the event and passes it
back to the adapter when it occurs
4. The adapter reconverts the event and passesiit back
to the originating component
5. The originating component reactsto the event and
notifiesits listeners

N -

Figure 4.12: BattleSim Event Scheduling

E. SUMMARY

BattleSim provides STAFFSIM a discrete event simulation of vehicle to vehicle
battle. The entities in BattleSim are designed with a component architecture in order to
maximize component reuse and improve overall efficiency. The components within
BattleSim implement simple models for the real world interactions between combat vehicles.
These models can be replaced without discarding the component and coding a new
component. To introduce a new combat model the existing component is simply sub-classed.

Sub-classing of components in this manner increases the potential for reuse while
simultaneously reducing the coding effort required to implement new models.

Recalling the motivations for developing a new simulation discussed in chapters one
and two it is now time to evaluate STAFFSIM against those requirements. The primary tool
for evaluating STAFFSIM will be its ability to meet the specified requirements while war
gaming atypical scenario from the NTC. The following chapter will introduce such a

scenario and evaluate STAFFSIMs ability to function as required by army staffs in the field.

55

56

V. STAFFSIM IMPLEMENTATION

A. INTRODUCTION

Now that STAFFSIM and BattleSim have been presented it is appropriate to evaluate
the simulation in terms of the requirements developed in earlier chapters. The baseline
requirements enumerated for STAFFSIM in chapters one through three are listed below.

The ssimulation must be hosted on a single personal computer.
Generation of new terrain models from NIMA products must be fast and easy.
The time required to generate a new scenario must be less than thirty minutes.
The simulation must run to completion in less than three hours.
No specially trained support staff must be required to operate or maintain the
simulation.
Once an upgrade to the simulation is developed and ready for fielding, specially
trained support staff must not be required to install it.
These requirements along with how well STAFFSIM supports the war gaming process form
the primary yardstick against which to evaluate the concept of simulation support for the war
game.

The best measure of STAFFSIM’ s utility from the operational standpoint isto use it
as it was designed. In short, develop a scenario and determine STAFFSIM’ s ability to assist a
staff in achieving better synchronization in the war game. Unfortunately, STAFFSIM does
not yet feature the full functionality required to do this. However, the base architecture is
complete and does allow trial scenarios to be run and evaluated. The remainder of this
chapter discusses one such scenario and STAFFSIM’ s performance during the trial. The goal
of this thesis was to build a simulation that serves as a proof of concept for the operational
use of asimulation to support real-time decision-making. This chapter demonstrates a
simulation’s ability to improve staff synchronization during the war game. Thus, as a proof
of concept, STAFFSIM achievesits stated purpose. Additionally, STAFFSIM’ s ability to
meet the requirements reviewed above is discussed.

57

B. SCENARIO DEVELOPMENT

As discussed earlier the National Training Center (NTC) isthe army’s premier
maneuver training center. At the NTC, brigade staffs face the most challenging series of
scenarios possible short of actual combat. To evaluate STAFFSIM, atypical NTC scenario
has been replicated. Arguably the most demanding of the NTC scenariosis the full
Motorized Rifle Regiment (MRR) attack. In this scenario the rotational brigade is usually
allowed 48 hours to prepare a deliberate defense. During the planning and preparation phase
the brigade staff conducts the staff planning process to include war gaming. As the brigade
completes planning and preparation, the OPFOR attacks in order to penetrate the defense and
destroy the defending friendly brigade. During the attack the OPFOR faithfully replicates the
doctrine, tactics and equipment of afull MRR.

Thefirst step to war gaming the trail scenario isto initialize STAFFSIM with the
opposing orders of battle and courses of action. The time required to initialize a scenario is
one of the primary performance criteria against which STAFFSIM is evaluated. In order to
fully understand what is required to initialize a scenario the opposing orders of battle and

courses of action are presented below.

1. Order of Battle

The opposing orders of battle define the units that compose the attacking OPFOR
regiment and defending friendly brigade. The units depicted in the order of battle diagrams
represent aggregations of combat vehicles. Although STAFFSIM models combat between
individual vehicles, the simulation map display depicts unit icons as shown in the order of
battle diagrams. Staff officers are trained to represent men and equipment in this manner.
Thus STAFFSIM’ s user interface uses these icons because their meaning and function is
intuitively obvious to the target audience.

a. Opposing Orders of Battle

The OPFOR regiment is organized for combat with four motorized rifle
battalions (MRB), each consisting of three motorized rifle companies (MRC) and an anti-
tank platoon. STAFFSIM supports company and platoon size units thus the MRCs are the
units seen in the simulation. The numbers underneath the icons in the diagrams are the unit
“dant” reports. The dant report is smply a shorthand method of annotating the strength of a

58

unit on a vehicle basis. For example, the dant of 40/116/9 for the MRR meansthat the MRR
is equipped with 40 tanks, 116 infantry-fighting vehicles and nine anti-tank vehicles. Figure

5.1 depicts the OPFOR order of battle.

40/ 116/9

10/29/3 10/29/3 10/29/3 10/29/3

I I I |
= = = Y
3/8/0 3/8/0 3/8/0 0/0/3

= =] D

0/4/0 0/4/0 3/0/0

K

o (0]

10/29/3

APC

AT

LEGEND

Mechanized Infantry
Armor

Mechanized Anti-Tank

Regiment

Battalion

Company

Platoon

10 Tanks/ 29 APCs/ 3 AT vehicles

Armored Personnel Carrier

Anti - Tank

Figure5.1: OPFOR Order of Battle

The friendly force is organized into two battalions, one with four companies,
the other with two. A seventh company is held as the brigade reserve. The friendly slant

figures represent tanks and infantry fighting vehicles only. Figure 5.2 presents the friendly

order of beattle.

X
BDE Reserve
44/ 54 14/0
[: |
11 11
-
20/36 10/18
T T I T 1 T 1
4/9 0/13 10/4 4]9 0/13 10/4
=] =5[] = O] O = =] D] =[] [
04 04 40 04 40 4]0 04 04 40

04 40 4/0

Figure5.2: Friendly Forces Order of Battle

b. Order of Battle Input to STAFFSIM

STAFFSIM provides two techniques for unit construction, file input or unit
construction with the graphic users interface (GUI). Either technique is accomplished using
SimBuilder.

Unit construction boils down to the specification of alist of properties for the
unit being built. Table 5.1 lists the properties that must be supplied to build platoons and
companies. Although properties are specified for units, STAFFSIM takes these properties
and uses them to construct both the unit and its component vehicles. In order to build a

company the specified parameters must be supplied as well as up to five platoons.

SimBuilder Unit Construction Properties

Platoon Company
Force | dentifier . Force | dentifier
Designation . Designation
Vehicle Type . Position
Number of Vehicles . Formation
Position . Distance Between Sub-Units
Formation . Orientation
Orientation . Unit Type
Distance Between Vehicles
Vehicle Rate of Fire
Vehicle Field of View
Vehicle Ammunition Load

Table5.1: Unit Properties

Figure 3.3 (page 28) depicts SimBuilder’s CompanyBuilder panel. The
company and platoon builder panels are ssimple point and click interfaces that allow rapid
specification of the desired units. While the SimBuilder GUI is intuitive and fast, importing
units by file can be much faster, once the unit file is built. Building unit files for scenario
initialization can take some time but is a one-time exercise. Once one unit file exists, others
can be rapidly created from the original in less than half the time required by the GUI
interface. A full discussion of specific timesis presented in later sections.

2. Coursesof Action

While planning the defense the brigade staff develops several potential courses of
action the enemy could pursue as well as several potential friendly courses of action. During
the war game each friendly course of action is fought against each enemy course of action.

60

The analysis during the war game is used to synchronize the friendly course of action and
ultimately leads to the selection of one friendly course of action. For the trial scenario a
single friendly and single enemy course of action are presented below.

a. OPFOR Course of Action

The OPFOR course of action has the regiment attacking in advanced guard
formation. The leading elements are the combat reconnaissance patrols (CRP) followed by
the forward security element (FSE). The FSE is a company sized unit and is followed by the
battalion sized advanced guard main body (AGMB). The mission of these forcesisto gain
intelligence, find or create potential weak spots in the enemy defense, or, if necessary, to fix
a portion of the defending enemy force. Following the AGMB is the regimental main body.
The main body seizes key terrain and attempts to defeat and penetrate the defending force to
allow the regimental second echelon to seize the regiment’s main objective.

The course of action is depicted in Figure 5.3 and has the regiment placing its
main attack in the northern half of the zone. The FSE attacks in the south to both deceive the
friendly force as to where the main attack will occur and to fix friendly forces defending in
the south. The AGMB attacks in the north attempting to find a weakness in the defense or
failing that, to create a weak point in the defense. The regimental main body follows the
AGMB to complete the destruction of the defenders in the north and to create a penetration
of the enemy defense. The regimental second echelon follows behind the main body with the
mission of securing the regimental objective. This course of action is one of several the
OPFOR could potentialy pursue. For purposes of brevity it isthe only COA war gamed in
this discussion.

b. Friendly Course of Action

The friendly force defends in sector with two task forces abreast and a tank
company in reserve. The brigade expects the brunt of the enemy attack to fall on only one
battalion task force. Each defending battalion is prepared to counterattack into the flank of
the MRR if it is not attacked. The battalion in the north defends with three companies
forward and one in battalion reserve. The southern battalion defends with both of its
companies forward. Figure 5.4 shows the friendly course of action. The arrows labeled ‘ A’
and ‘B’ in the figure depict the planned counterattack axis mentioned above. If the enemy
attacksin the north, the southern battalion will counterattack into the flank or vice versa. The

61

brigade reserve will be committed as a last resort.

BS FLOBA 5.0 Bola

Eroext Eap Lt Jools Help

=+l
R-2502N C %)

4 Main Body

e

] 2d Echelon

[WapScale | S00CO0 [Locallon 115 MYEZ3T1410 118" 237 00° VW 35" 22097 N

Figure5.3: OPFOR Course of Action

ol FLOHA 5.0 Belda
¥

Srweet Moap Dwstlw ledls el

= =l
R-250°>M

Northern
Battalion

Figure5.4: Friendly Course of Action

62

C. Course of Action Input to STAFFSIM

STAFFSIM’ s ExecutiveOfficer component allows usersto rapidly assign
movement orders to any unit in the simulation. Units can be assigned orders on the fly
without even stopping the smulation. However, it is preferable to pause the simulation
before assigning orders to units.

When a unit is assigned orders it immediately begins execution of the orders.
If aunit is currently executing orders and is assigned new orders, the current orders are
canceled in favor of the new ones. The ExecutiveOfficer allows staff officers to explore
courses of action by assigning units new orders as unanticipated situations arise. The ability
to stop the smulation, analyze options and assign new orders allows for rapid course of

action refinement and more complete analysis.

Fili Katir Drkers i shrlse
Baknten Ordirs | Selackd Linit

ot
nEg

P b i iﬂ%mﬂ H-HJ:D.'
|
P ||
- | ;!
| b I
= Rk Paramies

Sequenc dpesd Formsrion

i I % g L Ses
. § wadpa 4 | Pt . - Iﬁ
| -
2 i

5 WEdpd 4 — g %
ik I cm:all
[P
e
| sowime || Mewor. |

Figure 5.5: Assigning Unit Orderswith ExecutiveOfficer

Figure 5.5 depicts the ease with which units can be assigned orders using
ExecutiveOfficer. In the figure the user has selected CRP3 (highlighted in light red) and is
assigning move orders. The line extending south from the unit and then to the east isthe
route the unit is being directed to follow. Route segments are added simply by clicking a
desired destination on the map. For each route segment, the user can set the speed for the
segment and the unit’s movement formation. These parameters are input viathe Move Plan

63

dialog box shown in the lower right hand corner of the map. Once the user is satisfied with
the assigned orders ExecutiveOfficer is used to task the selected unit and the orders are
executed. Assigning ordersto units in this manner is fast and efficient allowing user
interaction without substantially impacting the time required to run the simulation.

C. SCENARIO EXECUTION

Once the simulation has been initialized it is time to begin the war game. Figure 5.6
depicts the scenario as the first units of the MRR, the combat reconnaissance patrols, begin to
enter the defending battalions' sectors. Asthe scenario unfolds the forward security element
(FSE) attacksin the south followed by the Advanced Guard Main Body (AGMB) attacking
in the north. As more and more enemy units enter the picture it becomes more and more
difficult for the staff officers to completely visualize the potential options open to both sides
not to mention conducting any type of analysis. To complicate the matter even further, as
opposing units come into direct fire range the staff begins to spend large amounts of precious
time debating outcomes. The debate about outcomes often eclipses any attempt at objective
analysis and thus sidetracks the war game fromits true purpose. In order to illustrate how

STAFFSIM avoids unproductive debate and allows the staff to focus on synchronization; we

will focus on the efforts of the AGMB and the main body to penetrate the brigade’ s defense.
B FLOAA 5 [Hola

Combat Reconnaissance
Patrols (CRPs)

{

"
(W gcale 1o ZE0000 |Localicn 118 MYS0II0ES2 118" J0°5ETYY 357 18'05 M

Figure5.6: CRPs Enter Sector and Make Contact

As the scenario continues the AGMB moves into sector and attacks the battalion in
the north. At this point in the typical war game the only visualization available to staff
officersis one enemy icon representing the AGMB next to two icons representing the
friendly companies. The icons themselves are typically oversized and usually obscure the
map. Asthe AGMB moves into direct fire range, the assembled staff officers must envision
the situation and think through time, space, unit capability relationships to eventually arrive
at an outcome for the engagement. While doing this they must also consider the impact of
combat multipliers such as artillery support, air support and obstacles. They must also
evaluate the utility of things such as intelligence collection plans, planned decision points and
reserve dispositions. Given the multitude of factors, the staff must consider and the complex
relationships that must be though through it is easy to see how a staff can be sidetracked from
true analysis. When the staff finally reaches a consensus about the outcome, in this case, say,
the AGMB is destroyed for the loss of one friendly company, the staff moves on to the next
critical event. No real analysis has occurred and synchronization has not been improved.

BFAFLORA 5.0 Beta M=l E3
Project Map Overlay Tools Help

i

; o <
211 MBB @g e i
== "I. "
y e

4
i

1
RS L

o o LN "o e
e — | - :
i TankEE .__F_;__;__;.i-_.--:::;ff_ Al
: |
. Eﬁ"’“““ Ce i =___=,|
e 0 km 1 km Zkm |
| v

iMap Scale 1:100000 | Location 115 MW397B1732 116°33'43"W 35 23'54" N

Figure5.7: AGMB Assaults

65

Figure 5.7 shows the visualization STAFFSIM provides to the staff and STAFFSIM
provides the outcomes. By providing an accurate visualization and showing within that
visualization the time, space, unit capability relationships, the staff can analyze the situation
and better synchronize the plan. From STAFFSIM’ s visualization it is easy to observe that
the OPFOR has the opportunity to mass the AGMB against just the northern defending
company. Given the terrain in the vicinity of the defense the potential exists for an attacker to
achieve a significant local superiority. Furthermore, since the simulation provides the
outcomes the staff can easily evaluate the defending company’ s ability to defeat the AGMB.
If the probability of successisto low the staff can modify the plan as necessary to ensure that
either the AGMB cannot mass against a single company or that if it does, the defending
company is properly resourced to succeed. Analysis such asthis alows the staff to ensure
unit plans are feasible, properly synchronized and that all units have been assigned missions

within their capabilities.

FLOAA 6.0 Beta
Broject [alag Dl Tl Heshi

: |t{ '+'|£!:||
He2:48 | soran TR ANy — Vi |7 =l
i '-«.,-_,_,dj;,',-.';_ [g L -1 Remnants of AGMB penetrate ' iy P
{ ! . S L \I Lt 1| thedefense and overrun the FR
4 it < sl "_' <] northern -most company 1 :
| [, oy TR P>] 5 | T R L |'
kTR R R b =
Y Rt f : # i L {'
oaatil] S ol = ok =i I el =
i %4 o e H
" ! - N i
Z B fED]] j
—N\4 = . ﬁ,;{ == ! — |
e s 1 LY : e A
|. i .- i o - l---v--"-"':' o
2 ke lr] HI'II@ | --"::':] .F
= i ':;_. | I [\
- e — — = m‘"““L
e, A s e | A S e Imm— I R S
o i AT o T Mo 2 - !
g " . . e et ! o
21| 17 battalion of mainbody |+ qi e S -
| massing against remaining T 3 & I ““'--';'?"“""----as{f'”'
—= .. defenders Ii’ L. EY s Tt — — __-:-_f_ﬂ‘e'---
T T e LY B - § i
oS B L] Ky« = FETie ¥m aam x|
al |l |

|Map Ecale 1100000 Location

Figure5.8: AGMB Penetratesthe Defense

Returning to the typical war game, the AGMB has been destroyed at the cost of the
northernmost defending company. Given the loss of the northernmost company, the northern

battalion’s reserve company would probably be committed to reinforce the surviving

66

company forward. The separation in time between the OPFOR’s AGMB and main body is
thirty minutes. The staff would normally judge that as sufficient time to move the reserve
forward and re-establish a two-company defense before the OPFOR’ s main body arrives.

It is human nature to abstract events into discrete occurrences separated by time.
However, to do so misrepresents the actual time space relationships in play on the battlefield.
The attack of the AGMB and loss of the northernmost company take place over time, not at a
discrete time. While that attack is occurring the main body is steadily closing the thirty-
minute gap. By the time the defending force realizes that it must reinforce the defense the
main body will have arrived and begun its attack. Thus the defenders plan is already
becoming desynchronized as the attackers can mass up to two battalions on asingle
company. Worse still, the reserve company will arrive too late to influence the action and
will itself have to fight two enemy battalions. In essence, the attackers have created a
situation where they can mass against the defending companies one at atime, achieving
overwhelming force ratios in each instance.

A simulation can prevent the kind of errorsin calculating time distance relationships
discussed above. Returning to STAFFSIM’s visualization of the scenario, Figure 5.8 shows
the scenario as the attack of the AGMB plays through and the main body arrives. It can
clearly be seen that as the attack of the AGMB culminates in the destruction of the
northernmost company the leading battalion of the main body has arrived and is massing
against the remaining defending company. Furthermore, the remnants of the AGMB, about
company size in strength, have penetrated the defense. STAFFSIM’ s visualization clearly
shows that the enemy is succeeding in massing against single companies. Furthermore, the
time space relationships discussed above are shown, they do not have to be thought through
by the staff. Figure 5.8 also revealsthat as the reserve company moves forward to reinforce
the defense it can not possibly make it in time. Even if the reserve could make it in time it
would have to fight the remnants of the AGMB in order to assume the positions of the
destroyed company.

At this point the typical war game is usually hopelessly off track. Failure to
understand time space relationships and focusing on outcomes and not analysis has combined
to mislead the staff asto the feasibility of their course of action. By the time the two
battalions of the main body have completed their attack the staff typically concludes that the

67

two defending companies and the battalion reserve company have been destroyed and that a
unit the size of a motorized rifle company has penetrated the defense. The penetration of the
defense triggers a counterattack by the southern battalion and the brigade reserve that
successfully destroys the penetrating units and the regimental 2d echelon ending the war
game. The staff would usually conclude that the COA is feasible and could even recommend
to the commander that the brigade implement it.

W)
Main Body, 5 companies i |
strong continues attack to Battalion Reserve
the east Company
N I []
f
I 17 A ||I - I) ¥ X 5 1 AL " -?-..;ﬂ Y -.'--.-:---- : | .:'-_
Remnants of AGMB orient |5 s=mseit -] R L T |
4| tosouth for flank protection [T P EI | {
ai = B ' - - .[.--'-ﬂ_x_ = "_"'_-‘I'n.:'- -------
f F iF i g A I
| =1 EE] g | |7
- : .|-:| o ER] 1 b 2 jl
-l | v
5 Wdan Oosle | OODOD Locstior

Figure5.9: Main Body Penetratesthe Defense

Figure 5.9 shows that a simulation can reveal afar different picture. The remnants of
the AGMB have swung to the south in order to provide flank protection for the main body of
the regiment. Although the AGMB is only company size in strength it can potentially disrupt
counterattacks from the south long enough for additional forcesto arrive. The two battalions
of the main body are continuing the attack to the east. The northern battalion’ s reserve
company is still alive but will ailmost certainly be wiped out by the advancing main body in
short order. The battalion defending in the south is counterattacking with one company and
the brigade reserve is enroute. The enemy’ s second echelon battalion has not been committed
and is following closely behind the main body. Once again the defenders are desynchronized
and committing companies piecemeal in afailing effort to save alost battle. The simulation
has revealed several flawsin the plan that must be corrected if it is to stand a reasonable
chance of success.

On the battlefield at the NTC, results generally resemble those depicted in the

simulation. Defending brigades never go into battle with a plan they believe has a poor

68

chance of succeeding. Y et amost invariably they lose, many times losing very badly. Why
then do brigades fail? As discussed in chapter two, invariably part of reason for falureisa
poorly synchronized plan. Brigades do not intentionally enter battle with poorly synchronized
plans, usually they expend a great deal of time and effort trying to ensure their plan is sound.
Unfortunately, given the mental complexity of war gaming most staffs fail to realize they are
doing a poor job of synchronizing their plan.

This scenario has demonstrated some of the pitfalls of war gaming that a simulation
can remedy. Time space relationships and their relevance to unit capabilities are very
difficult to fully think through. A simulation can visualize these relationships for a staff
providing theminsight into what is and what is not possible in a given situation. A
simulation can also remedy the natural tendency for staffs to discuss outcomes of battles, as
opposed to analyzing situations. The underlying combat models in a simulation provide
probable outcomes eliminating the need for any discussion of outcomes at all. This alows
the staff to focus their cognitive energies on analysis and synchronization. A simulation can
also give the staff the opportunity to experiment with several different solutionsto a given
problem. Analysis of this nature not only gives the staff a better understanding of the
problem but can help to ensure workable solutions are selected for implementation.

This section has demonstrated the ability of simulation to assist the staff during war
gaming. STAFFSIM is a prototype of the kind of simulation needed. STAFFSIM’ s set of
featuresis limited to vehicle on vehicle combat and thus many of the combat multipliers
found on modern battlefields have not been discussed. As combat multipliers are added to the
scenario the complexity of the analysis increases dramatically. The additional cognitive
workload that increased complexity places on the staff can be eased by simulation as well.
Simulation can allow staff officers to focus on finding and analyzing solutions to the current
tactical problem as opposed to wasting time thinking through details that are best presented
visually by acomputer. The following section addresses the ability of STAFFSIM to meet

the requirements for a simulation presented in earlier chapters.

D. STAFFSIM VERSUS SIMULATION REQUIRMENTS

The first requirement for the new simulation is that it can run on a personal computer
typicaly found in a brigade or battalion headquarters. STAFFSIM was developed on an Intel

69

based persona computer with one processor using Microsoft’s Windows 98 operating
system. The CPU clock speed was 400 megahertz with 128 MB of random access memory
(RAM). The memory footprint for the version run in the trial scenario was just more than 102
MB. A breakdown of the memory figure is useful in understanding what is actually required
by STAFFSIM to execute a scenario. Table 5.2 provides a memory breakdown for
STAFFSIM.

STAFFSIM MEMORY REQUIRMENTS
Program Component Memory Required
Source Code 1.56 megabytes
DTED Elevation Data 2.88 megabytes
1:500,000 Mapping 3.56 megabytes
1:250,000 Mapping 9.97 megabytes
1:100,000 Mapping 31.30 megabytes
1:50,000 Mapping 52.48 megabytes

Table5.2: Memory Requirements

From a memory standpoint STAFFSIM’ s requirements are not extensive and can be
easily supported by most modern PCs. In the event memory becomes an issue it is easy to
scale back STAFFSIM’ s requirements. For example, in the trial scenario the 1:50,000
mapping was not used at all. Furthermore, for all map scales two to three times the map area
required was included in the mapping database. Efficient selection of the mapping required
for a given scenario could reduce the total memory required to less than 40 megabytes.

The second key issue concerning utilization of a PC is speed. When run on a 400
megahertz system the simulation was sluggish. Although the trial scenario runsin less than
three hours the ow pace renders STAFFSIM unusable for real-time analysis in its current
configuration. However, no reasoned approach to optimizing the code has been attempted.
Furthermore, STAFFSIM is only meant as a proof of concept. Given that the underlying
concepts are sound, a professionally coded simulation can ailmost certainly meet the
requirements for real-time use. In fact, STAFFSIM itself, once properly optimized stands the
chance of being responsive enough for real-time use.

70

The second criterion requires fast and easy generation of new terrain models for the
simulation. The terrain model used by STAFFSIM consists of two components, mapping and
terrain elevation data. STAFFSIM imports terrain elevation data directly from the Digital
Terrain Elevation Data (DTED) CD-ROMs produced by NIMA. The time required to read in
and initialize the elevation model for a one-degree DTED square is less than five minutes.
STAFFSIM uses DTED level one data. The mapping component of the terrain model is more
complicated.

STAFFSIM uses NIMA ARC Digitized Raster Graphics as the source for the
mapping used by Flora. STAFFSIM does not, however, physically generate the image files
used by Flora. A third party application is used to generate the actual mapping image files.
Generation of the mapping for the trial scenario required less than five hours.

Does a composite time of five hours to generate a complete terrain model from
scratch meet the requirement for fast and easy terrain generation? Recalling from chapter one
the time and expense required to generate new terrain models for some of the existing
simulationsit is easy to see that STAFFSIM is faster and simpler. The real question is
however, is five hours fast enough? From an operational standpoint, it probably is. Even the
fastest deploying troops do not expect to see themselves thrust into combat any faster than
twenty-four hours, probably more. For forward-deployed troops, the area where they will
potentialy fight is well known and thus the mapping can be prepared ahead of time. Thus,
five hoursis amost certainly fast enough.

Scenario generation time is of critical importance for real time use. The staff planning
process has been shown to be an intense, time critical effort where every minute counts.
Scenario generation time in excess of thirty minutes cannot be supported. STAFFSIM hasthe
ability to generate scenarios in less than thirty minutes, when run on two machines. The time
required populating the smulation for the trial scenario using the GUI was thirty-eight
minutes or roughly two minutes per company. To create the same unit files from scratch
using atext editor such as Notepad required less than two hours. Importing units from text
filesis the preferred method. The two-hour time requirement is a one-time expense. Once
one unit file exists, it is a simple matter of cut and paste to modify that file for a different
scenario. Depending on the amount of changes that must be made a new unit file can be

71

prepared in less than ten minutes. Once the unit file is imported, the simulation requires less
than three minutes to process it and build the required units.

The second piece of scenario initialization is input of the course of action into the
simulation. Using the ExecutiveOfficer GUI the course of action for the trail scenario
required twenty-eight minutes to input. Twenty-eight minutes is somewhat slow and must be
improved if real time use is to be feasible. The course of actionsin the trial scenario required
extensive COA input for only one side. If the trail scenario had required extensive COA input
for both sides the thirty-minute limit would have been exceeded. However, if the friendly and
enemy COASs are built on separate computers, the files can then be merged and run on the
same machine. In this manner the thirty-minute limit can be achieved.

The final two criteria are that the smulation is easily upgraded and need no special
support staff. Hosting the simulation on a single PC eliminates many of the reasons support
staff are required for the currently fielded simulations. STAFFSIM does not require any
hardware setup, running of cables, or specialized software installation and initialization.
STAFFSIMs user interface is designed to be intuitive to the target audience and does not
require any special training beyond reading a users manual. STAFFSIM and all supporting
software can be downloaded over a network and installed ssimply by following a one or two
page instruction sheet.

E. SUMMARY

Simulation support for real-time decision making is achievable using STAFFSIM
STAFFSIM can provide valuable support to the Army’ s staff planning process, particularly
to course of action analysis. It can successfully visualize a course of action for the staff,
relieve the staff from the difficult task of envisioning complex time, space, unit capability
relationships and provide probabilistic outcomes to engagements. The use of a simulation in
this manner can focus staffs on synchronizing courses of action, prevent time wasting debate
about outcomes and speed the course of action analysis process. The end result is a better
plan that is more fully synchronized and thus better positions a unit for success on the
battlefield.

As a prototype war game simulation, STAFFSIM has demonstrated the fundamental
utility of smulation to the war gaming process. It has been shown how a simulation supports

72

the war game by helping to achieve the results discussed above. STAFFSIM itself has several
shortcomings that prevent its immediate application by unit staffs. While STAFFSIM’s
current prototype implementation does not have the run-time performance needed for
operational use, it successfully demonstrates the feasibility of the underlying architecture.

73

74

VI. CONCLUSIONS

A. CONCLUSIONS

The use of asimulation in the war gaming step of the Military Decision-Making

Process can reduce the cognitive workload on staff officersin three important ways.
The simulation visualizes the battlefield situation with respect to time for the staff
officers. Officers will no longer have to envision in their mind’s eye the precise
sequencing of events and spatial relationships between units.
The simulation relieves the officers from the tedious and difficult task of mentally
thinking through complex time, space, unit capability relationships. The
simulation will demonstrate these relationships allowing officersto rapidly and
accurately assess what is and is not possible with respect to time, distance and
unit capabilities.
The ssimulation provides the outcomes to all engagements. The combat models
embedded within the simulation determine the most probable outcome for unit on
unit engagements. Thus the subjective decisions arrived at in current war games
can be replaced with objective results based on tested and accepted combat
models.
These factors combine to significantly reduce the mental workload imposed on staff officers
during the war game. By reducing mental workload and replacing subjective outcome
decisions with objective combat models a simulation can allow the staff to focus on
analyzing the course of action. True course of action analysis as opposed to simple
discussion of outcomes will result in better synchronized battle plans which in turn will better
position friendly forces for success on the battlefield.

The latest generation of personal computers are now powerful enough and have
enough storage space to run high resolution combat models. The Army’s current set of high-
resolution combat simulations was designed well over a decade ago. At that time it was
unthinkable to use computer simulation in areal time decision making process. The
complexity of the systems required to run the simulations and the support staff required to do
so prevented their use in anything but fixed site simulation centers.

75

It is now possible to implement simulations using high-resolution combat models on
personal computers. If properly designed, these smulations can be used in real time decision
making. STAFFSIM is a proof of concept demonstrating how simulation can be used to
improve course of action analysis in the Military Decision-Making process. Use in real time
environments requires that the interface to the simulation be consistent with the training and
doctrine of the target audience.

B. FUTURE WORK

The work completed on STAFFSIM thus far constitutes the base architecture for the
simulation. STAFFSIM’s run-time performance needs to be enhanced by optimizing its code.
Furthermore, STAFFSIM models only vehicle on vehicle combat. These factors combine to
suggest four areas where significant future work is required; implementation of acceptable
high-resolution combat models, addition of the all the Battlefield Operating Systems (BOS)
to the simulation, improvement of the systems performance, and experimentation in the field.

1. High Resolution Combat Models

The only combat model in STAFFSIM that is a standard army model isits use of the
Janus line of sight algorithm. STAFFSIM is ready to have the basic army models plugged
into its components, as described in chapter four. For example, the Army’s Acquire model
for sensing and detection could be added to the BasicSensor component. Incorporation of
these models is important for the following reason. These models have been extensively
tested and are accepted as valid throughout both the tactical and simulations communities
within the Army. An attempt to use models other than currently accepted ones could result in
dismissal of the entire concept of simulation support for real time decision making based not
on its merits but on the use of untested models.

2. Battlefield Operating Systems
In its current state STAFFSIM does not model indirect fires, dismounted infantry,
close air support, chemical munitions, command and control, engineers or army aviation.

When the brigade staff analyzes a course of action all of these factors must be carefully
considered. For asimulation to be useful to a brigade staff it must model all the elements and

76

capabilities of the brigade. Thus, it isimportant for STAFFSIM to include these factors as
development continues.

3. System Performance

STAFFSIM’ s speed of execution needs improvement. Real time use by a group of
assembled staff officers requires a crisp response from the user interface and speed of
execution from the simulation. In order to improve overall performance, STAFFSIM should
be profiled to determine where the bottlenecks exist. Once the bottlenecks have been
identified, general solutions that preserve the architecture can be implemented. Additionaly,
the degree of complexity and multitude of independent tasks accomplished by the simulation
suggest that a threading model may help improve performance. The results of profiling the
simulation may suggest certain tasks or even components that are candidates for their own
thread. Performance improvements in the smulation should lead to a more responsive GUI
as code bottlenecks that prevent timely execution of the Java event thread are eliminated.

4. Field Experimentation

Once the improvements discussed above have been accomplished STAFFSIM must
be tested in a field environment. Only field tests can truly determine the feasibility of

simulation support for the Military Decision-Making Process.

C. SUMMARY

This thesis contends that the time has arrived for the use of smulation to support real
time decision-making. Currently, the Army uses a wide variety of simulations at the tactical
level to train troops on a multitude of tasks. As computers have become smaller and more
powerful it has become possible to operate complex simulations on personal computers.
Simulations run on PCs can deploy with tactical units and be used by unit staffsin the field.
This thesis presents a prototype of one such simulation designed for use by brigade staffs to
analyze courses of action. It has been demonstrated that unit staffs continually have difficulty
conducting course of action analysis resulting in less than optimal unit performance at the
Army’s combat training centers. This thesis has demonstrated that a complex, high-resolution

77

simulation can be run on a single PC and that such a simulation can most probably improve
staff performance of course of action analysis.

78

APPENDIX A: SELECTED IMPLEMENTATION CODE LISTINGS

Table of Contentsfor the Code Listings

[. BASE INTERFAQCES..... ..o sas s sasssssnnsnsnnnas 80
YA (Y0)Y7 = = TN TN 80
S TS = N IT0) = N TR 81
(ORI IY =7 Y =0 N TN Y TR 83
D). FIREDIRECTION.JAVA ... ciittttiii et i ittt e e e e st eab s e e e et e e st b e e ee s s e et b b s eeesse s s bbb seessees bbb seesseeesbbanssns 84
I1.INTERFACE IMPLEMENTATIONS.. ... s 85
YAV = NS @\ [V =i TN VTN 85
B. BASICSENSOR.JAVA ... ittt ittt st e e e ettt s e e e e s et et e e esssea s bt ees s e s s b b e eessses bbb s eeaseensbbanases 92
C. BASICWWEAPON.JAVA. ...ctttiiieeiieiettie e e e e e e e eet e s s e e s s te et seeaasees bbbt aeesseea bbb s seesseasbba s eessseesbbaanaeaanes 97
D). FIRECONTROL.JAVA ... ciiittttiiieee e ettt st e e e st ea b st e e et ees bbbt s eessee s bbb s eessee s s b b s eeesseesbba s eeeseeasbaaassss 100

79

Aut hor :

Bi || Bohnman

Originated: 30 Nov 98

0.0

Updat es:
To Do:

*
*
*
* Version:
*
*
*

package StaffSim

import nodkit.*;
import nodutil.spatial.?*;

public i

publ i
publ i

publ i
publ i

publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i
publ i
publ i
publ i
publ i

publ i

publ i

publ i

nterface Myver {

Cc
Cc

Cc
Cc

Cc

C

C

Cc
Cc

C

C

Cc
Cc

C

C

C

C

C

C

C

C

C

voi d set Start Pos(Coor 3D set Val ue) ;
Coor 3D get Start Pos();

voi d setlnitial Pos(Coor3DinitPos);
Coor 3D get I nitial Pos();

voi d set EndPos(Coor 3D newEndPos) ;
Coor 3D get Cur rent Pos() ;
Coor 3D get Vel ocity();

doubl e get Current Speed() ;
doubl e get MaxSpeed();

Coor 3D getDirection();
doubl e get Azi mut h();

voi d set Fi nal Azi mut h(doubl e val ue);
doubl e get Fi nal Azi mut h();

doubl e get StartTi me();
doubl e get EndTi ne();
String getName();

bool ean i sMoving();

voi d st opMove(doubl e del ay);

doubl e cal cMbveDi st ance(doubl e time, doubl e speed);

voi d noveTo(Coor 3D desti nati on,

voi d addMbdEvent Li st ener (MbdEvent Li st ener eavsDropper);

voi d gener at eMoveEvent (String evt Nane, doubl e del ay,

} // end interface Mover

11
/1

/1

/1

/1

/1

/1
/1

/1

/1

I
/1

/1

/1

/1

/1

11

doubl e spd, doubl e del ay);

Position fromwhich current nove started or

if not moving the current position
Position at sinmulation time equal to zero
Position at which current nmove will end

Current Position at sintinme when nethod called
true velocity, direction and speed

current speed, magnitude only, no direction
Movers maxi mum attai nabl e speed (kph)

unit vector in direction of npve, cartesian
current direction referenced fromagrid north

azimuth nover will assune at the end of
current nove or if stationary, current azinuth
time current nove started

time current nove will end

retrieve the Mwver's nane
is Mver currently noving
stop current nove at current sintine + del ay

/1 how far can be noved

/'l results in scheduling
/] of a npbve event

/1 add a listener

doubl e speed, double prior);

80

Aut hor :

Bi || Bohnman

Originated: 30 Nov 98

0.0

Updat es:
To Do:

*
*
*
* Version:
*
*
*

package StaffSim

import nodkit.*;
import nodutil.spatial.?*;
import java.util.*;

public interface Sensor {

publi ¢ ModConponent getParent ();

publ i
publ i
publ i

publ i

publ i
publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i

publ i
publ i
publ i

Cc

Cc
Cc

doubl e get Sensor MaxRange() ;

voi d set SensorOri entati on(doubl e orientTo);
doubl e get SensorOrientation();

voi d adj ust Sensor Ori entati on(doubl e ori ent To);

doubl e get SensorFi el dOF Vi ew() ;

bool ean i nFi el dOf Vi ew(Coor 3D t gt VehPos) ;
bool ean i nFi el dOf Vi ew Coor 3D t gt VehPos,
doubl e get SensorLeftLimt();

doubl e get SensorRightLimt();

Coor 3D get Sensor Vel ocity();
Coor 3D get Sensor Locati on();

Vector get TrackList();
voi d printTrackList();

bool ean i sTracki ng(Vehicl e tgtVeh);
bool ean i sDet ect ed(ModConponent target);

voi d set Acti ve(bool ean onOfif);
bool ean get Active();

voi d addDet ecti on(Target target);
voi d renoveDet ecti on(Target target);

doubl e get Ti neToDet ecti on();
doubl e get Ti neToCl assi fy(Target tgt);
doubl e get Ti neTol denti fy(Target tgt);

/1 conponent that owns this sensor

/'l sensors maxi mumrange in kiloneters

/'l center of sensors search area
/Il referenced to grid north, generates
/1 a sensor changed orientation event

/1 changes sensor orientation wo
/] generating a sensor changed
// orientation event

/1 width of sensor'sfov in radians

/] is target in the sensors area of

/'] search

Coor 3D snsVehPos) ;

/1 angle from sensor to specified
// limt in radians, referenced to
/1 grid north

/1 speed & direction sensor is noving
/'l sensor's current |ocation, these
/] two properties are retrieved from
/] the parent, they are not resident
//in the sensor

/Il list of 'Target'(s) sensor is
/1 is tracking

/Il is specified vehicle being tracked

/1 is sensor searching or not

/1 add Target to thetrackli st
Il renpve traget fromtrack |ist

/1 returns time in hours until the
/1 specified event, these nethods
/1 specify the detection algorithns
/] used by the sensor

81

public voi
public
public
public
public
public
} /] end i

d target Cl assified(Target ghost); /1 notification to the sensor that
void targetldentified(Target ghost); /1 these events have occurred
voi d target ChangedVel ocity(Target ghost);

voi d target M ssed(Target ghost);

String get Nane(); /'l get sensors nane

voi d addMbdEvent Li st ener (MbdEvent Li st ener eavsDropper); // add a listener

nterface Sensor

82

Aut hor :

Bi || Bohnman

Originated: 8 Jan 99

Updat es:

To Do:

package St

*
*
*
* Version: 0.0
*
*
*

affSim

import nodkit.*;
import java.util.*;

public interface Wapon{

public
public
public

radi ans
public
public
public
public
public
public
public

event

} /] end i

voi d set WeaponOrientation(double orientation); // direction weapon is facing in
doubl e get WeaponOrientation(); /1 radians reference to grid north

doubl e get WeaponLeftLimt(); /'l angle to specified limt in

doubl e get WeaponRi ghtLimt();

doubl e get WeaponFi el dOF Vi ew() ; /1l width of fov in radi ans

doubl e get WeaponMaxRange() ; /1 weapon nmax range in kil ometers
int get AmpAvai l abl e(); /1 nunber of rounds on hand
String get WeaponNane() ; /1 weapons name

ModConponent get Parent () ; /1 conponent that owns the weapon

voi d shoot (Target target ToShoot, Sensor detectingSensor); [// tell weapon to fire
/] generates a 'Fire'

nterface Weapon

83

*

* Author: Bill Bohman
* Originated: 14 Jun 99
* Version: 0.0
* Updat es:

* To Do:

*

package StaffSim

public interface FireDirection {

public voi d engageTarget (Sensor detectingSensor, Target newlgt); // determines if and when
public voi d engageTarget (Sensor detectingSensor); /1 to engage a new target

publi c Weapon sel ect Fi ri ngWeapon(Target target, double range); /1 determ nes whi ch weapon
/1 to shoot at the target

} /] end interface FireDirection

*

-~

o T T O T R T S I

Aut hors: Bill Bohman
Originated: 20 Cct 98
Version: 0.3
Updates: 1) 4 Nov 98 --> Converted fromsinkit.snd.coordinate to
nmodki t. nodutil . spatial . Coor 3D
2) 7 Nov 98 --> included capability to nobve to several waypoints in sequence by
the inclusion of the 'path' private data meneber and by
overl oadi ng the noveTo() nethod.
3) 14 Nov 98 --> swithched over to SinkitAdapter technique, discarded Si nvbdEvent
and MyBasi cMbdEvent ()
4) 30 Nov 98 --> made BasicMover inplenent the nmover interface
5) 7 Jan 99 --> added 'classification' data nenber

To Do: 1) Fix Interrogator
2) replace console i/o error checking in theconstructor(), generateSi nvbdEvent (),
and set Current Speed() with GUl dial og boxes

Notes: 1) This Mover generates the following events, event priority is included in
parenthesis. For priority |ow nunbers = high priority

Initial Pl acement (0.0) EndMove (3.0)
Start Move (0.0 EndSegnment (3.0)
Start Segemmt (0. 0)
2) This Mver is a smooth |linear nover, i.e. when this npver begins to nove it

i nstantaneously junps to cruising speed (as set by user), noves the required
di stance and direction (also as set by user) theninstaneously stops. This nover
has no ability to accelerate or decelerate

3) To use this class as the base for a nobre conplex nover the follow ng nethods need
to be over ridden, cal cMoveTine(), getCurrentPos(), cal cMveDi stance()

*

-~

package StaffSim

import StaffSim?*; /'l for Cl ass CoordConverter --> for getting el evations
import StaffSim Shared. *;

import StaffSimEvents.*;

import StaffSim Shared. Terrain.*;

import sinkit.*; /1 for Schedule etc.

import nodkit.*; /1 for BasicMddConponent etc.
import nodutil.spatial.?*; /1 for Coor3D

inmport thistle.flora.coord.*;

import java.util.*; /1 for Vector

public class Basi cMover extends Basi cModConponent inpl enents Mover{

private Coor 3D start Pos, /1 position from which nmoves begin or position when stationary
endPos, /] position at end of a nove
initialPos, // first position in the sinulation, used for reset
vel ocity; /1 direction and speed of novenent
private doubl e maxSpeed, /1 maxi mum al | owabl e speed
moveTi e, /1 tinme required to conplete currrent nove
startTi ne, /1 time current nove started, if stationary, tine |ast nove ended
endTi ne, // time current move will end
final Azimuth;// direction vehicle is to be pointing after |ast nove
private Vector path; /'l sequence of waypoints that define a path of npbvenent

private static int identity;// for unique nam ng
private static SinkitAdapter sa;

static{
sa = new Si nkitAdapter();
identity = 0;
} // end static initializations
e I e
/1 Constructors
e I e
public Basi chMover(String nane, Coor3D position, double nmSpeed){
super(new String(name + identity++ + " "), true); // allow self introspection
start Pos = new Coor 3D(position); I/l set to user provided val ue
initial Pos = new Coor3D(position); /Il set to user provided val ue

85

endPos = new Coor3D(-1.0, -1.0, -1.0); /1 set for consistency/error checking

vel ocity = new Coor3D(0.0, 0.0, 0.0); /'l start as not noving thus no velocity
set MaxSpeed(nSpeed) ; /] set to user supplied value

set MoveTi me(0d); /1 set for consistency/error checking
set Start Ti me(0d); /1 set for consistency/error checking
set EndTi me(0d) ; /1 set for consistency/error checking
set Fi nal Azi nut h(0d) ;

set Parent (nul l); // if added to container, container sets
set Ver bose(fal se);

path = new Vector(); /1 allocate menory for the vector
addModPr opertySource(this); /'l property source for self

addModEvent Li st ener (thi s); /Il listen to own events, thus will hear own

/'l schedul ed events when they occur and can
/'l then take the appropriate action
gener at eMoveEvent ("I nitial Placenent”, 0.0, 0.0); // notify listeners of existence
} // end constructor /1l and initial |ocation

public Basi cMover(String nane, Coor3D position, doublentSpeed, double orient){
thi s(name, position, nSpeed);
set Fi nal Azi nuth(orient);

} // end constructor

public void setStartPos(Coor3D | ocation){startPos = |ocation;} /] Start Pos
publi c Coor3D get Start Pos(){return new Coor 3D(st art Pos); }

public void setlnitial Pos(Coor3D | ocation){ /1 Initial Pos
initial Pos = | ocation;
startPos = | ocation;

} // end setlnitial Pos
public Coor3D getlnitial Pos(){return new Coor3D(i nitial Pos);}

public voi d set EndPos(Coor 3D | ocati on){endPos = | ocation;} /| EndPos
publi ¢ Coor 3D get EndPos() {return new Coor 3D(endPos) ;}

public void set Vel ocity(Coor3D vel){velocity = vel;} Il Velocity
public Coor3D get Vel ocity(){return new Coor3D(vel ocity);}

public void set MaxSpeed(doubl e nSpeed) { /'l MaxSpeed
mSpeed = checkLessThanZer o(nSpeed, "maxSpeed");
maxSpeed = nfSpeed;

} // end set MaxSpeed

publi c doubl e get MaxSpeed(){return maxSpeed; }

public voi d set Current Speed(doubl e cSpeed) { /'] Current Speed
if (isMving()){
cSpeed = checkSpeed(cSpeed);
/] retrieve current direction and multiply by new speed
Coor3D direction =getDirection();
set Vel oci ty(new Coor 3D(di rection.get X() * cSpeed,
direction.getY() * cSpeed,
direction.getZ() * cSpeed));
/'l recal cul ate nove paraneters
moveTo(get EndPos(), cSpeed, 0.0);

} /] end if
el se{
System out. println(get Name() + " cannot change speed because " +

getName() + " is not currently noving");
} /1 end else
} /1 end setCurrent Speed

publi c doubl e get Current Speed() {
/1 current speed is enbedded in velocity & nmust be extracted
Coor3D tenmp = getVelocity();

86

return Math.sqrt(tenp.getX() * tenp.getX() +
tenmp.getY() * tenp.getY() +
tenp.getZ() * tenp.getZ());

} // end getCurrent Speed

public Coor3D getDirection(){
// current direction is enbedded in velocity and nust be extracted /1 direction
Il retrieve X, Y and Z conponents of velocity
doubl e xConmponent = endPos. get X() - startPos. getX();
doubl e yConponent endPos. get Y() - startPos.getY();
doubl e zConmponent endPos. get Z() - startPos. getZ();

/'l cal cul ate magni tude of velocity vector

doubl e magni tude = Mat h. sqrt (xConmponent * xComponent +
yConmponent * yConponent +
zComponent * zConponent);

/'l calculate direction (in unit vector form of velocity vector
Coor 3D direction = new Coor 3D(xConponent / magni tude,
yConponent / magni tude,
zConmponent / magnitude);
return direction;
} /1 end getDirection

publi ¢ doubl e get Azi mut h() { /1 azinmuth
/'l azimuth is enbedded in the velocity vector
if (getVelocity().norm() == 0){
return getFinal Azi mut h();
Y} /1 end if
el se {
return Math. atan2(get Vel ocity().getX(), getVelocity().getY());
} 1/ end else
} /1 end getAzinuth

public voi d setFinal Azi mut h(doubl e faci ng){final Azi ruth = facing;} /1 final azimuth
publi c doubl e getFi nal Azi muth() {return final Azi mut h;}

publi ¢ Coor 3D get Current Pos() { /'] Current Pos
/1 if not nmoving current position is StartPos
if (lisMowving()){
return startPos;
} // end if
/1 if we are noving calculate the time since nove began, then
/1 cal cul ate distance covered since nobve began, then add distance
/1 covered to start position to get current position
el se {
Coor 3D del taMbve = (Coor3Dvel ocity. scal ar Mul (Schedul e. si niTi me() - startTine);
Coor 3D newPos = (Coor 3D st art Pos. add(del t aMbve) ;
FI oraCoor di nate current Pos = CoordConverter. get Fl oraPositi on(newPos) ;
newPos. set Z(El evat i onManager . get El evati on(current Pos. get Lat Long()));
return newPos;
} /1 end el se
} // end getCurrentlLocation

public void set MoveTi ne(double tinme){ /1 MoveTi ne
time = checkLessThanZero(time, "noveTine");
nmoveTime = tine,;

} // end setMveTine

publi c doubl e get MoveTi me(){return nmoveTine; }

public void setStartTi me(double tine){ /] StartTime
time = checkTinme(time, "startTinme");
startTine = tinme,;

} /1 end setStartTine

public double getStartTime(){return startTi nme;}
public void set EndTi ne(doubl e tine){ /] EndTi me

time = checkTime(time, "endTime");
endTime = time;

87

} /1 end setEndTime
public doubl e get EndTi me(){return endTi me;}

publi ¢ bool ean i sMvi ng(){ /1 Movi ng
/1 isMwving is enbedded in velocity, if velocity is not zero then
/'l isMowving is true, else false
if (getVelocity().norm() != 0){
return true;
Y} /1 end if
el se return false;
} // end is noving

public void setPat h(Vector newRoute){ /] Path
pat h. renoveAl | El enents();
path = newRout e;

} // end setPath

public Vector getPath(){return (Vector)path.clone();}

/1 Move property allows a parent (MdContainer) to nove by
/1 setting the Move property of its Myver conponent
public void set Move(Cbject[] parans){

Vector route (Vect or) parans[0] ;

Doubl e tenpl = (Doubl €) parans[1];
Doubl e tenp2 = (Doubl) parans[2] ;
doubl e speed = tenpl. doubl eVal ue();
doubl e del ay = tenp2. doubl eVal ue();

moveTo(route, speed, delay);
} /1 end setMve()

public Vector getMove(){return (Vector)path.clone();}

B e e T R
/1 Movenent Methods

publi c doubl e cal cMoveTi me(Coor 3D start, Coor3D stop, double speed)
doubl e di stance = start. distTo(stop);
set MoveTi me(di stance / speed);
return noveTi nme;

} /1 end cal cMoveTi ne

publi ¢ doubl e cal cMoveDi st ance(doubl e tine, doubl e speed){
return time * speed;
} /1 end cal cMbveDi st ance

public voi d noveTo(Vector novePath, double spd, double del ay){
set Pat h(novePat h) ; /] set the new route into path
Coor 3D next WayPoint = (Coor3Dpath.firstElement(); // get the 1st waypoint of the route
pat h. renoveEl ement At (0) ;
moveTo(next WayPoi nt, spd, del ay); /'l move to the 1st waypoint, see
} // end noveTo /1 handl eStart Move for further noves

public voi d noveTo(Coor 3D destination, double spd, double delay){
spd = checkSpeed(spd); /1 check for valid speed
del ay = checkLessThanZero(del ay, "delay"); /1 check for valid del ay

doubl e direction = Math. atan2(destination.getY() - getCurrentPos().getY(),
destination.getX() - getCurrentPos().getX());

/1 if vehicle is currently nmoving then there are several different cases to handle
/1l --> Case 1) Vehicle is executingwaypoints init's path vector and has just conpleted

/1 an endSegnent event and is beginning the next segnent of it's route,

/1 therefore a startSegnment must be schedul ed

/Il --> Case 2) Vehicle has been given an updated speed an/or destination in the nmiddle
/1 of a move segnment, therefore its current endMove event nust be interrupted
I and a new endMove event nust be schedul ed

if (isMving()){

88

set Start Ti me(Schedul e. si nTi me()); /] start time = cur. tine

set Start Pos(get Current Pos()); /] start pos = cur. pos
set EndPos(desti nation); /] endPos = destination
set MoveTi me(cal cMoveTi me(start Pos, endPos, spd)); /1 set time to finish nove
set EndTi me(Schedul e. si mli me() + nmoveTi ne); /1 set tine nmove will end
set Vel oci ty((Coor3D)getDirection().scal arMl (spd)); /1 set velocity

/1 vehicle is already noving therefore start a new segment
gener at eMoveEvent ("Start Segnent", 0.0, spd, 0.0);
return;

} /] end if isMving()

/! else if not already noving we need to start noving

el se {
set Start Ti me(Schedul e. si nTi me() + del ay); /1 set tine nove begins
set Start Pos(get Current Pos()); /] start pos = cur. pos
set EndPos(desti nation); /] user sets destination
set MoveTi me(cal cMoveTi me(st art Pos, endPos, spd)); /] set tine to conplete the nove
set EndTi me(Schedul e. si nli me() + noveTime + del ay); /] set tine move will end
} /1 end else /1 insinkit

gener at eMoveEvent (" St art Move", delay, spd, 0.0); // generate 'StartMve' event
} // end noveTo

public void stopMve(doubl e del ay) {
if (isMving()){

gener at eMoveEvent (" EndMove", 0.0, 0.0, 0.0); /1 schedul e EndVbve event
} /] end if
} /1 end stopMve()
/| ===
/1 WUility Methods
/| ===

public void nyDunpState() {
Systemout.print("\n" + getNane() + " is at " + getCurrentPos());
if (isMving()){
Systemout.print(" nmoving to " + endPos + " at " + getCurrentSpeed() + " kph\n\n");
} /1 end if
Systemout. println("\n\n");
} // end dunpState

public String toString() {return getName();}

publi ¢ doubl e checkSpeed(doubl e cSpeed) {
/'l ensure current speed is |less than max speed and greater than zero
whil e (cSpeed > maxSpeed || cSpeed < 0){
if (cSpeed > maxSpeed){
System out. println("current Speed nust be | ess than MaxSpeed");
cSpeed = naxSpeed;
Y} // end if
if (cSpeed < 0){
System out. println("current Speed nust be greater than zero");
cSpeed = 0.0;
Y} // end if
} /] end while
return cSpeed;
} /1 end checkSpeed

publi ¢ doubl e checkLessThanZer o(doubl e numloCheck, String vari abl eName) {
whi | e(nunifoCheck < 0){
numfoCheck = Consol e.readDoubl e(vari abl eName + "nust be greater than " +
"or equal to zero, enter a new value...");
} /] end while
return nunfloCheck;
} /1 end checkLessThanZero

publi ¢ doubl e checkGr eat er ThanZer o(doubl e nunifoCheck, String vari abl eNane){
whi | e(nunifoCheck > 0){
numloCheck = Consol e.readDoubl e(vari abl eName + "nmust be less than " +
"or equal to zero, enter a new value...");
} /] end while
return nunfloCheck;
} /I end checkGreaterThanZero

89

publi ¢ doubl e checkTi ne(doubl e ti meToCheck, String variabl eName) {
whi | e(ti meToCheck < Schedul e. si nili ne()){
System out. println(variabl eName + "nust be after current " +
"simlinme(), current sinmfine() is " +
Schedul e.sinlime() + ", enter a new val ue");
ti meToCheck = Schedul e. si nili ne();
} /] end while
return timeToCheck;
} // end checkTinme

public void printListeners(){
for (Enumeration enum = listeners.elenments(); enum hasMoreEl ements();){
MbdEvent Li st ener ears = (MbdEventLi st ener)enum next El enent () ;
Systemout.println(ears.toString());
} /1 end for
} // end printListeners

/1l Event Generators

/] for StartMve/Start Segnent & EndMbve/EndSegnent Events
public voi d generateMveEvent (String event Name, doubl e del ay, double speed, double
priority){
Ohj ect[] paranms = new Object[8];
parans[0] = this;
parans[1 new String("MyveEvent");
par ans[2 (getParent() == null ? this : getParent());
par ans[3 st art Pos;
endPos;
new Doubl e(start Ti me);
par ans[6 new Doubl e(endTi ne) ;
parans[7 new Doubl e(speed);
sa. gener at eSi nEvent (get Name(), delay, params, priority, eventNane);
} // end generateSi nivbdEvent

parans[5

/1 for Initial Placement Events
public voi d generateMveEvent (String event Name, doubl e del ay, double priority){
Obj ect[] paranms = new Object[8];
parans[0] = this;
parans[1 new String("MyveEvent");
(getParent() == null ? this : getParent());
get Current Pos();
get Current Pos();
new Doubl e(Schedul e. si nili ne());
new Doubl e(Schedul e. si nili ne());
new Doubl e(get Curr ent Speed());
sa. gener at eSi nEvent (get Name(), del ay, paranms, priority, eventNane);
} // end generateSi nivbdEvent

]
]
]
par ans[3]
par ans[4]
par ans[5]
par ans[6]

]

B e e T R
/1 Event Handlers

public void handlelnitial Pl acenent (MoveEvent evt){
if (((BasicMuver)evt.getSource()).equals(this)){ /1 if | generated this
set Start Pos(get Current Pos()); /1 event, update ny
} /] end if /] starting position
} // end handl el ni tial Pl acenent

public void handl eSt art Move(MveEvent evt) {

if (((BasicMuver)evt.getSource()).equals(this)){ /1 if | started noving
Coor3D direct =getDirection();
doubl e spd = evt. get Speed(); /1 unw ap speed for nobve
set Vel oci ty((Coor3D)direct.scal ar Ml (spd)); /] set velocity vector
set Fi nal Azi nut h(get Azi mut h());
if(path.iseEmty()){ /1 if this is last leg...

gener at eMoveEvent (" EndMove", noveTi me, spd, 3.0); /'l schedul e EndVbve event

Y} // end if

90

el se {

gener at eMoveEvent ("EndSegnment ", noveTi me, spd, 3.0);

} /1 end el se
} /] end if
} // end handl eStart Mve

public voi d handl eEndSegnent (MbveEvent evt){
if (evt.getSource().equals(this)){
set St art Pos(endPos) ;
Coor 3D next WayPoint = (Coor3Dpath.firstEl ement();
pat h. renoveEl ement At (0) ;
moveTo(next WAyPoi nt, get Current Speed(), 0.0);
} /] end if
} // end handl eEndSegment

public void handl eSt art Segnent (MoveEvent evt){

if (evt.getSource().equals(this)){
Coor3D direct =getDirection();
doubl e spd = evt. get Speed();
set Vel oci ty((Coor3D)direct.scal ar Ml (spd));
set Fi nal Azi nut h(get Azi mut h());
if(path.isEmty()){

gener at eMoveEvent (" EndMove", noveTinme, spd, 3.0);

Y} // end if
el se {

gener at eMoveEvent ("EndSegnent ", noveTi ne, spd, 3.0);

} /1 end else
} /1 end if
} // end handl eSt art Segnent

public void handl eEndvbve(MyveEvent evt){

/1l else...
/1 schedul e endSegnent

/1 unw ap the speed
/] set velocity vector

/1 if this is last leg...
/'l schedul e EndMbve event

/1l else... schedule
/| endSegnent evt

if (evt.getSource().equals(this)){ /1 if 1 finished moving

Coor3D direct =getDirection();
set Fi nal Azi nut h(get Azi mut h());

set St art Pos(endPos) ; /'l update startPos, startPos for next nove
set Vel oci ty(new Coor3D(0.0, 0.0, 0.0)); /1 set velocity to zero

set Start Ti me(Schedul e. si nTi me()); /] earliest possible time another npbve can
set MoveTi me(0. 0); /] start is the time the |ast nove ended

set EndTi me(Schedul e. si mTi me());
} /] end if
} // end handl eEndMbve

} // end class BasicMver

91

-~
*

L I T R R I

-~

Aut hors: Arnold Buss & Bill Bohman
Originated: 7 Nov 98
Version: 0.1
Updat es: 22 Nov 98 --> renpved sensorlLocation and sensorVel ocity properties because those
properties are avialable in the parent property of Basi cModConponent
which this class extends
30 Nov 98 --> nmmde Basi cSensor inplenent the Sensor interface

To Do: 1)

Notes: 1) This sensor is a basic cookie cutter sensor. Wen a target enters the sensors
range the nediator checks for and if necessary schedul es Enter/Exit LOS events.

with a mean tine to detect of 5mins or as set by the user.

2) To use this class as the base for a nore sophisticated sensor the follow ng
met hods nust be over witten; getTi neToDetection(), getTi meToC assify(),
get TimeTol dentify(), getRightLimt(), getLeftLimt, inFieldOView)

*

package StaffSim

import StaffSimEvents.*;
import StaffSim Shared. *;

import sinkit.data.*; /1 for Cl ass RandonStream

import nodkit.*; /1 for class Basi cMdConponent etc
import nodutil.spatial.?*; /1 for class Coor3D

import java.util.*; /1 for class Vector

import java.lang.reflect.*; /1 for class Method

public class Basi cSensor extends Basi cModConponent i nplements Sensor {

private doubl e sensor MaxRange, /1 mexi mum range at which a sensor can detect a target
sensorOrientation, // direction the sensor is currently |ooking
sensorFieldOFView, // width of the sensors field of view

sensorLeftLimt, /1 left bound of sensors assigned sector of search
sensorRightLimt; /1 right bound of sensors assigned sector of search
private Vector trackList; /1 list of all targets currently being tracked
private String sensorNane; /1 identifying name of the sensor
private bool ean active, // true = sensor is active, false = sensor is inactive
debug; /1 for debugging, if true activates tracing
private doubl e meanTi neToDet ect, /1 mean tine to detection after entering LOS

meanTi meToCl assify, // mean tinme to classify after detection occurs
meanTi meTol dentify; // mean tinme to identify afetr classification occurs

private static RandonStreamrs; /1 for exponential times to detection
private static int identity; /1 for unique nam ng
static{

rs = new Randontt r ean{ Randontt r eam STREAM 1) ;

identity = 0;

} // end static initializations

When a target enters LOStinme to detection is assunmedto exponentially distributed

/| ===
/1 Constructors

/| ===

publi ¢ Basi cSensor (doubl e mRng, String id, boolean onOf, double orient, double fov) {
this(mRng, id, orient, fov, onOff, 1.0/4.0, 1.0/8.0, 1.0/12.0);
} // end constructor

publi ¢ Basi cSensor (doubl e mRng, String id, double orient, double fov) {
this(mRng, id, orient, fov, true, 1.0/6.0, 1.0/12.0, 1.0/18.0);
} // end constructor

publi ¢ Basi cSensor (double mRng, String id, double orient, double fov, boolean onOf,
doubl e mtd, double mttc, double mtti){
super(new String(id + identity++ + " "), true);// allow self introspection
set Sensor MaxRange(nmRng) ; /1 set user supplied val ues
set SensorOrientation(orient);

92

set Sensor Fi el dOf Vi ew(f ov) ;

trackLi st = new Vector(); /1 allocate menory
set Sensor Nane(i d); /] set user supplied val ues
set Active(onOff); /'l set user supplied value

debug = fal se;

set MeanTi meToDet ect (nttd);

set MeanTi meToCl assify(nttc);

set MeanTi meTol dentify(ntti);

addModEvent Li st ener (thi s); /Il listen to own events
} // end constructor

/1 Properties

/| ===

public voi d set Sensor MaxRange(doubl e nRng) { /1 Sensor MaxRange
sensor MaxRange = checkGr eat er ThanZer o(nmRng, "sensor MaxRange");
} // end set maxRange

publi ¢ doubl e get Sensor MaxRange() {return sensor MaxRange;}

public void setSensorOrientation(double facing){ /] SensorOrientation
sensorOrientation = facing;
//Systemout.println("Setting " + this + " orientation to " + facing);
set SensorLeftLimt(facing - getSensorFieldOView) / 2);
set SensorRi ghtLim t(facing + getSensorFieldOView) / 2);
gener at eEnt er Exi t Event ("ChangedFi el dOf Vi ew") ;
} // end setOrientation()

public void adjust SensorOri entati on(doubl e facing){
sensorOrientation = facing;
set SensorLeftLimt(facing - getSensorFieldOView) / 2);
set SensorRi ghtLim t(facing + getSensorFieldOView) / 2);
} // end setOrientation()

publi c doubl e get SensorOrientation(){return sensorOrientation;}

public void set SensorFi el dOF Vi ew(doubl e fov) { /| SensorFi el dOf Vi ew
sensor Fi el dOF Vi ew = fov;
set Sensor LeftLimt(getSensorOrientation() - fov / 2);
set Sensor Ri ght Li mi t (get SensorOrientation() + fov / 2);
gener at eEnt er Exi t Event ("ChangedFi el dOf Vi ew") ;
} /1 getOrientation()

publi c doubl e get Sensor Fi el dOf Vi ewm() {return sensorFi el dOf Vi ew, }

private void setSensorLeftLimt(double I1){ /] SensorlLeftLimt
sensorLeftlLimt =11;
} // end setSensorLeftLimt

public doubl e get SensorLeftLimt(){return sensorLeftLimt;}

private void setSensorRightLimt(double rl){ /1 SensorRi ghLimt
sensorRightLimt =rl;
} // end setSensorRightLimt

public doubl e get SensorRightLimt(){return sensorRightLimt;}

publ i ¢ Coor 3D get Sensor Locati on(){ /1 Location
if (getParent() != null){
return (Coor3D)get Parent ().getProperty("CurrentPos");
} /1 end if
return null;
} I/ enf getSensorLocation

publi ¢ Coor 3D get Sensor Vel ocity() { /'l Velocity
if (getParent() != null){
return (Coor3D)get Parent ().getProperty("Velocity");
} /1 end if
return null;

} /1 end getSensorVelocity

93

public void setTrackLi st(Vector newList) {trackList = newlist;} /] TrackLi st

public Vector getTrackList() {return trackList;}

public void set SensorNanme(String id) {sensorNanme = id;} /| Sensor Nane
public String getSensorNane() {return sensor Nane;}
public void setActive(bool ean onOff) { /1 Active
if (active == false & onOff == true){
gener at eGeneri cMbdEvent ("Acti vat eSensor ") ;
} else if (active == true && onOf == fal se){

gener at eGeneri cMbdEvent ("Deacti vat eSensor");
} // end else if
active = onOff;
} // end setActive

publi c bool ean get Active() {return active;}

public void set MeanTi neToDet ect (doubl e nt d) {neanTi mreToDet ect = ntd;}
publi ¢ doubl e get MeanTi meToDet ect () {return neanTi neToDet ect; }

public void set MeanTi neTod assi fy(doubl e ntc){meanTi meToCl assify = ntc;}
publi c doubl e get MeanTi meToCl assify(){return meanTi mreToCl assify;}

public void set MeanTi neTol denti fy(double nti){meanTi meToldentify = nti;}
publi c doubl e get MeanTi neTol dentify(){return meanTi meTol dentify;}

/| ===

/1 Uility Methods

/| ===

publi ¢ doubl e checkGr eat er ThanZer o(doubl e nunifoCheck, String paramane){
whi | e(nunifoCheck < 0){
numloCheck = Consol e.readDoubl e(paranName + " nust be greater than zero, " +
"enter a valid nunber...");
} /] end while
return nunfloCheck;
} // end checkG eat er ThanZero

publi c bool ean i sTracki ng(Vehicl e tgtVeh){
for (Enumeration enum = trackList.elenments(); enum hasMoreEl ements();){
Tar get checkVeh = (Target)enum next El enent () ;
i f (checkVeh. get Nane().equal s(new String("Ghost-" +tgtVeh.getNane()))){
return true;
Y} // end if
} /1 end for
return false;
} /1 end isTracking()

public void printTrackList(){
Systemout. println("Sensor " + getName() + " is tracking...");
for (Enumeration enum = trackList.elenments(); enum hasMoreEl ements();){
Target tenpTarget = (Target)enum nextEl enent();
System out. println(" " + tenpTarget.get Nanme());
} /1 end for
} // end printTrackList()

public String toString() {return getName();}
public void trace(String arg){Systemout.println(arg);}
publi ¢ bool ean i nFi el dOF Vi ew(Coor 3D t gt VehPos) {
Coor 3D snsVehPos = (Coor 3D) (get Parent().getProperty("CurrentPos"));
doubl e angl e = Mat h. at an2(t gt VehPos. get X() - snsVehPos. get X(),
t gt VehPos. get Y() - snsVehPos. getY());
if (angle >= sensorlLeftLinmt && angle <= sensorRightLimt){return true;}

if (angle >= -sensorRightLimt && angle <= -sensorlLeftLimt){return true;}

return false;
Y/l end inFieldOfView()

94

publi ¢ bool ean i nFi el dOf Vi ew(Coor 3D t gt VehPos, Coor 3D snsVehPos) {
if (debug) {trace("entering MLGunnersPrinarySight.inFiel dOView) wargs... " +
"\n tgtVehPos = " + tgtVehPos + "\n snsVehPos = " + snsVehPos);}

doubl e angl e = Mat h. at an2(t gt VehPos. get X() - snsVehPos. get X(),

t gt VehPos. get Y() - snsVehPos. getY());
if (angle >= sensorlLeftLimt && angle <= sensorRightLimt){return true;}
if (angle >= -sensorRightLimt && angle <= -sensorlLeftLimt){return true;}

if (debug) {trace("returning false");}
return false;
} // end inFieldOView)

/| ===

/1l Event Generators

/| ===

public voi d generateGeneri cModEvent (String event Nane) {
Generi cMbdEvent newEvent = new Generi cModEvent(this, eventNane);
noti fyLi st eners(newEvent);

} // end generateCeneri cMdEvent

public voi d generat eEngageEvent (String event Nane, Target tgt){
EngageEvent newEvent = new EngageEvent(this, eventNanme, (Vehicle)getParent(), this, tgt);
noti fyLi st eners(newEvent);

} // end generateCenericMdEvent ()

public void generateEnterExitEvent(String event Nane) {
if (debug){trace("entering BasicSensor.generateEnterExitEvent()");}
Ent er Exi t Event newEvent = new EnterExitEvent(this, eventName, this, (Vehicle)getParent());
noti fyLi st eners(newEvent);
if (debug){trace("exiting BasicSensor.generateEnterExitEvent()");}
} // end generat eEnt er Exi t Event

/| ===

/1 Event Handlers

/| ===

public voi d handl eActi vat eSensor (ModEvent evt){
trackLi st.renmoveAl | El ement s(); /1 ensuretrackList is clear of all old
} // end handl eActi vat eSensor /'l tracks

public voi d handl eDeacti vat eSensor (MbodEvent evt) {
trackLi st.renmoveAl | El ement s();
} // end handl eDeacti vat eSensor

/| ===

/1 Detection Methods

/| ===

public doubl e get Ti meToDet ecti on(){
return rs.exponential (meanTi neToDet ect) ;
} /1 end getTi neToDet ect

publi ¢ doubl e get Ti meToCl assi fy(Target tgt){
return rs.exponential (meanTi neToC assify);
} /1 end getTi neToDet ect

publi c doubl e get Ti meTol denti fy(Target tgt){
return rs.exponential (meanTi neTol dentify);
} /1 end getTi neToDet ect

public voi d addDet ecti on(Target target){
if (!trackList.contains(target)){
trackLi st. addEl ement (target);
gener at eEngageEvent (" NewTar get", target);
} /1 end if
el se {
System out. printl n("Target
} /1 end el se
} 1/ end addDetection

+ target + is already being tracked");

95

public void renoveDet ecti on(Target target){
if (trackList.contains(target)){
trackLi st.renoveEl enent (target);

} /] end if
el se {
Systemout.println("Sensor " + this + " is not tracking Target " + target);

} /1 end else
} // end renpveDetection

publi ¢ bool ean isDet ect ed(ModConponent target){
return trackLi st.contains(target);
} // end isDetected

public void target ChangedVel ocity(Target ghost){
gener at eEngageEvent (" NewTar get", ghost);
} // end target ChangedVel ocity()

public void target M ssed(Target ghost){
gener at eEngageEvent (" NewTar get", ghost);
} // end targetM ssed

public void targetCl assified(Target ghost){
if (ghost.getDetectionStatus() ==
gener at eEngageEvent (" NewTar get", ghost);
} /] end if
} // end targetCl assified

public void targetldentified(Target ghost){

if (ghost.getDetectionStatus() == 4){
gener at eEngageEvent (" NewTar get", ghost);
} /] end if

} // end targetldentified

} // end class BasicSensor

96

*

* Author: Bill Bohman
* Originated: 8 Jan 99
* Version: 0.0
* Updat es:

* To Do:

*

package StaffSim

import StaffSim Shared. *;
import sinkit.*;

import nodkit.*;

import nodutil.spatial.?*;
import java.util.*;

public class Basi cWapon extends Basi cModConmponent i npl ements Weapon {

private doubl e weaponMaxRange; /1 maxi mum engagenent range for this weapon
private int maxi nunmBasi cLoad, /1 max # of rounds typically carried on vehicle
ampAvai | abl e; /!l nunber of rounds currently on hand
private doubl e next Engagenent Ti ne, /1 is vehicle engaging at this tine
ti meToFire, /1 time to conplete one engagenent
weaponOri entation, /1 azinmuth of weapons center of sector
weaponFi el dOF Vi ew, /1 angul ar wi dth of weapons sector of fire
weaponLeftLimt, /1 radians, left limt of assigned sector
weaponRi ghtLimt, /1 radians, right linmt of assigned sector
maxRat e(f Fire, /1 rounds/m nute
rateOfFire, /1 rounds/m nute
roundsPer Bur st ; /1 nunber of rounds expended each timewn fired
private String weaponNane; /1 nane of weapon for indexing kill tables
private static int identity; /1 for unique nam ng
private static SinkitAdapter sa; /1 for generating schedul ed events
static {
sa = new Si nkitAdapter();
identity = 0;
} // end static initializations
/| ===
/1 Constructors
/| ===

publ i c Basi cWeapon(String name, double maxRng, int maxLoad, int |oad, double maxFire,
doubl e typical Fire, double orient, double fov, String wpnNane,
doubl e rdsPer Burst) {
super (nanme, true);
set WeaponMaxRange(maxRng) ;
set MaxBasi cLoad(naxLoad) ;
set AmmoAvai | abl e(] oad) ;
set MaxRat eOf Fire(maxFire * 60.0); /1 user inputs in rounds/m nute, must convert
setRateOfFire(typical Fire * 60.0); /1 to rounds per hour
set Next Engagenent Ti ne(0. 0) ;
set TimeToFire(1.0 / getRateOFire());
set WeaponOri entation(orient);
set WeaponFi el dOf Vi ew(f ov) ;
set WeaponNane(wpnNane) ;
set RoundsPer Bur st (r dsPer Bur st) ;
addModEvent Li st ener (thi s);
} // end constructor

publ i c Basi cWeapon(String wpnName) {
this(new String(" Basi cWapon-" +identity++ + " "), 3.5, 40, 40, 360.0, 3.0, 0.0,
Math. Pl / 2, wpnNane, 1.0);

/'l name --> Basi c\Weapon- ###
/'l weaponMaxRange --> default to 3.5 kilonmeters
/'l maxi nunmBasi cLoad --> default to 40 rounds, actual MLAl capacity
/!l ammAvail able --> default to a full |oad
/1l maxRateOfFire --> 360 rounds/hour = 6 rounds/ m nute
/!l rateOfFire -> 180 rounds/hour = 3 rounds/m nute
} /1 end constructor

97

public Basi cWeapon(String name, int load, int rateOFire, String wpnName) {

/'l note: rate of fire nmust be input in rounds per mnute, is converted to rounds/hour
thi s(name, 4.0, 40, |load, 360, rateOfFire * 60, 0.0, Math.Pl / 2, wpnNane, 1.0);
} // end constructor

/1 this is constructor called by Vehicle Builder
publi c Basi cWeapon(String wonNanme, int rateOFire, int |oad, doubl e maxRange,
doubl e roundsBurst, double orientation, double fieldOView)/{

/'l note: rate of fire nust be input in rounds per mnute, is converted to rounds/hour
this(new String("BscWn-" + identity++), maxRange, 10000, load, rateOfFire * 60,
rateOfFire * 60, orientation, fieldOView, wpnNane, roundsBurst);
} // end constructor

public Basi cWeapon(String name, int rateOfFire, String wpnNarme, doubl e naxRange,
doubl e roundsBurst) {

/!l Note: rate of fire nmust be sent inin rounds per mnute, is converted to rounds/hour
thi s(name, maxRange, 40, 40, 360, rateO'Fire * 60, 0.0, Math.Pl / 2, wpnName,
roundsBurst);
} // end constructor

publ i ¢ Basi cWeapon(doubl e maxRng, double orient, double fov, String wpnNane){
thi s(new String("Basi cWapon-" + identity++), naxRng, 40, 40, 360, 3, orient, fov,
wpnNane, 1.0);
} // end constructor

/1 Properties

/| ===

public void set WaponMaxRange(doubl e maxRng) {weaponMaxRange = naxRng;}
publi ¢ doubl e get WeaponMaxRange() {return weaponMaxRange;}

public void set MaxBasi cLoad(i nt maxLoad) {mexi munBasi cLoad = maxLoad;}
public int get MaxBasicLoad() {return naxi munBasi cLoad; }

public void set AnmpAvai |l abl e(i nt anmmp) {ammpAvail abl e = ammm;}
public int get AmmpAvail abl e() {return ammoAvail abl e;}

public void set MaxRat eOf Fi re(doubl e maxRof) {maxRateCf Fire = maxRof;}
public doubl e get MaxRateOf Fire() {return maxRateOFire;}

public void setRateCO Fire(double rof) {
if (rateOFire <= maxRateOf Fire){
rateOfFire = rof;
} /] end if
el se {
rateOfFire = Console.readlnt("Attenpted to set rateOfFire > maxRateOfFire " +
"re-enter ratefFire here -->");
} /1 end else
} /1 end setRateOfFire()

public double getRateOFire() {returnrateOFire;}

public voi d set Next Engagenent Ti me(doubl e next Ti ne) {next Engagenment Ti me = next Ti me; }
publi c doubl e get Next Engagenent Ti me() {return next Engagenent Ti me; }

public void setTi meToFi re(doubl e setValue) {ti meToFire = setVal ue;}
public double getTimeToFire() {returntinmeToFire;}

public void set WaponOrientation(double orient) {
weaponOrientation = orient;
set WeaponLeftLimt(orient - getWaponFieldOView) / 2);
set WeaponRi ghtLim t (ori ent + get\WaponFiel dOView) / 2);
} // end setWaponOrientation()

public doubl e get WaponOrientation() {return weaponOrientation;}

98

public void set WaponFi el dOF Vi ew(doubl e fov) {
weaponFi el dOF Vi ew = fov;
set WeaponLeftLimt(get WaponOrientation() - fov / 2);
set WeaponRi ght Li mi t (get WeaponOrientation() + fov / 2);
} // end setWaponOrientation()

publi c doubl e get WeaponFi el dOf Vi ew() {return weaponFi el dOf Vi ew; }

public void set WaponLeftLimt(double leftLim {weaponLeftLimt =leftLim}
publi c doubl e get WeaponLeftLimt() {return weaponLeftLimt;}

public void set WaponRi ghtLi mit (double rightLin) {weaponRightLinmt =rightLim}
publi c doubl e get WeaponRi ghtLimt() {return weaponRi ghtLinit;}

public void set WaponNanme(String wonNane) {weaponName = wpnNane; }
public String get WaponNane() {return weaponNane; }

public voi d set RoundsPer Bur st (doubl e rpb) {roundsPerBurst = rpb;}
publi ¢ doubl e get RoundsPer Burst () {return roundsPerBurst;}

/| ===

/1 Uility Methods

/| ===

public String toString() {return getName();}

/| ===

/1 Event generaters

/| ===

public voi d generat eEngageEvent (String sourceNane, doubl e del ay, double prior,
String event Name, Sensor detectingSensor, Target ghost){
Ohj ect[] eventParameters = new Object[6]; /1 build event object array
event Par amet er s[0] t his;
event Par amet er s[1] new String("EngageEvent");
event Par amet er s[2] get Parent () ;
event Par amet er s[3] det ecti ngSensor ;
event Par amet er s[4] t his;
event Par amet er s[5] ghost ;
sa. gener at eSi nEvent (get Name(), del ay, eventParanmeters, 0.0, "Fire");
} // end generat eEngageEvent

public void shoot(Target tgt, Sensor detectingSensor){
doubl e del ay;
if (Schedul e.siniline() >= next Engagenent Ti me) {
delay = timeToFire;
set Next Engagenent Ti me(Schedul e. si niTine() + timeToFire);
if (ammmAvail able > 0){
gener at eEngageEvent (get Name(), delay, 0.0, "Fire", detectingSensor, tgt);

ampAvai | abl e -= roundsPer Bur st ;
Y} // end if
el se {
Systemout.println(this + " is out of amunition");
Y} // end if
} /1 end if

el se {
del ay = next EngagenentTi me - Schedul e. sinlime() + tineToFire;
set Next Engagenent Ti me(Schedul e. si nili ne() + del ay);
if (ammmAvail able > 0){
gener at eEngageEvent (get Name(), delay, 0.0, "Fire", detectingSensor, tgt);

ampAvai | abl e -= roundsPer Bur st ;
Y} // end if
el se {
Systemout.println(this + " is out of amunition");

} /1 end el se
} /1 end el se
} // end shoot ()

} 1/ end cl ass Basi c\Weapon

99

*

* Author: Bill Bohman
* Originated: 8 Jan 99
* Version: 0.0
* Updat es:

* To Do:

*

package StaffSim
import StaffSim Shared. *;
import nodkit.*;
import nodutil.spatial.?*;

import java.util.*;

public class FireControl extends Basi cModConmponent inplenments FireDirection {

private WeaponControl wpnCtrl; /'l current weapons control status
private TargetPriority tgtPriority; /] current target priorities

private TreeSet nmsterTargetList; /1 prioritized list of targets to engage
private Vector targetsOnMasterTargetList; // un-prioritized list of targets on MIL
private static int identity; /1 for unique nam ng

private static SinkitAdapter sa; /1 for scheduling events

static{sa = new Si nkitAdapter();
identity = 0;
} // end static initializations

/| ===
/1 Constructors
/| ===
public FireControl (String nane){
super(new String(name + "-" +identity++), true);
wpnCtrl = new WeaponControl (0, 2, 2); /'l wesA = 1, wesB = 2, triggerLine = 2.0
tgtPriority = new TargetPriority(nane);
mast er Tar get Li st = new TreeSet (new Tar get Conparator());
target sOnMast er Target Li st = new Vector();
wpnCtrl . addModEvent Li st ener (t his);
} // end constructor
public FireControl (){
super(new String("FC-" + identity++), true);
wpnCtrl = new WeaponControl (0, 2, 2); /'l wesA = 0, wesB = 2, triggerLine = 2.0
tgtPriority = new TargetPriority(getNane());
mast er Tar get Li st = new TreeSet (new Tar get Conparator());
target sOnMast er Target Li st = new Vector();
wpnCtrl . addModEvent Li st ener (this);
} // end constructor
/| ===
/1 Properties
/| ===

public void setWnCtrl (WaponControl setQbj){wpnCtrl = setj;}
publi c WeaponControl getWnCtrl (){return wpnCtrl;}

public void setTgtPriority(TargetPriority setObj){tgtPriority = setCbj;}
public TargetPriority getTgtPriority(){returntgtPriority;}

protected void set MasterTargetList(TreeSet tgtList){msterTargetList = tgtList;}
public TreeSet get MasterTargetList(){return nmasterTargetList;}

public void set Target sOnMast er Tar get Li st (Vector tgts){targetsOnMasterTargetList =tgts;}
public Vector getTargetsOnMasterTargetList(){ return targetsOnMasterTargetList;}

100

/| ===
/1l Event Generators

/| ===
public voi d generat eEngageEvent (String event Nane, doubl e del ay, Target tgt, Sensor ds,
Weapon firi ngWeapon) {
Obj ect[] evtParans = new Object[6];
evt Parans[0] = this;
evt Parans[1] = "EngageEvent";
evt Parans[2] = getParent();
evt Parans[3] = ds;
evt Parans[4] = firingWapon;
evt Parans[5] = tgt;
sa.interruptAll ("NewTarget", evtParans);
sa. gener at eSi nEvent (get Name(), del ay, evtParans, 0.0, eventNane);
} // end generat eSchedul edEvent
/| ===
/1 Fire Control Methods
/| ===

public voi d engageTarget (Sensor detecti ngSensor, Target newTgt){
Coor 3D wpnPos = (Coor 3D) (get Parent().get Property("CurrentPos")); // retrieve own position
doubl e range = wpnPos. di st To(newTgt . get Current Pos()); /1 and cal cul ate range
Weapon firingWapon = sel ectFi ri ngWeapon(newTgt, range); /'l select a weapon

if (wpnCtrl.inSector(newlgt.getCurrentPos(), wpnPos, firingWapon)){
if (wpnCtrl.engagel nSect or (newTgt, (Vehicle)getParent())){
if (wpnCtrl.inRangeAndTri gger (newTgt, firingWapon)){
i f(!targetsOnMasterTargetlList.contains(newlgt)){ /] if target is not already on
mast er Tar get Li st. add(newTgt) ; /] the target list add it
t ar get sOnMast er Tar get Li st . addEl enent (newTgt) ;
Y /1 end if
Tar get target ToShoot = (Target)masterTargetList.first();
mast er Tar get Li st. renove(t ar get ToShoot) ;
t ar get sOnMast er Tar get Li st . renpveEl enent (t ar get ToShoot) ;
firingWapon = sel ect Firi ngWapon(target ToShoot, range);
firingWapon. shoot (t ar get ToShoot, detecti ngSensor);
} /1 end if
el se {
checkFor Tri gger (det ecti ngSensor, newTgt, firingWapon);
} /1 end el se

Y} // end if
} /] end if
el se {

if (wpnCtrl.engageQut Of Sect or (newTgt, (Vehicle)getParent())){
if (wpnCtrl.inRangeAndTri gger (newTgt, firingWapon)){
i f(!targetsOnMasterTargetlList.contains(newlgt)){ /] if target is not already on
mast er Tar get Li st. add(newTgt) ; /] the target list add it
t ar get sOnMast er Tar get Li st . addEl enent (newTgt) ;
Y /1 end if
Tar get target ToShoot = (Target)masterTargetList.first();
mast er Tar get Li st. renmove(t ar get ToShoot) ;
t ar get sOnMast er Tar get Li st . renpveEl enent (t ar get ToShoot) ;
firingWapon = sel ectFiri ngWapon(target ToShoot, range);
firingWapon. shoot (t ar get ToShoot, detecti ngSensor);
} /1 end if
el se {
checkFor Tri gger (det ecti ngSensor, newTgt, firingWapon);
} /1 end el se
Y} // end if
checkEnt er Sect or (det ecti ngSensor, newTgt, firingWapon);
} /1 end else
} // end engageTarget ()

public voi d engageTar get (Sensor detecti ngSensor) {

if (masterTargetList.isEmty()){ /Il if there are no
return; /] targets on the list
} /] end if

Target next Tgt = (Target)masterTargetList.first();
mast er Tar get Li st. rempove(next Tgt);
Coor 3D wpnPos = (Coor 3D) (get Parent (). get Property("CurrentPos"));

101

doubl e range = wpnPos. di st To(next Tgt. get Current Pos());
Weapon firingWapon = sel ect Fi ri ng\Weapon(next Tgt, range);

if (wpnCtrl.inSector(nextTgt.getCurrentPos(), wpnPos, firingWapon)){
if (wpnCtrl.engagel nSect or (next Tgt, (Vehicle)getParent())){

if (wpnCtrl.inRangeAndTri gger (nextTgt, firingWapon)){
t ar get sOnMast er Tar get Li st. renpveEl enent (next Tgt) ;
firingWapon. shoot (next Tgt, detectingSensor);

} /] end if

el se {
mast er Tar get Li st. add(next Tgt) ;
checkFor Tri gger (det ecti ngSensor, nextTgt, firingWapon);

} /1 end el se

Y} // end if
} /] end if
el se {

if (wpnCtrl.engageQut Of Sect or (next Tgt, (Vehicle)getParent())){
if (wpnCtrl.inRangeAndTri gger (nextTgt, firingWapon)){
t ar get sOnMast er Tar get Li st. renpveEl enent (next Tgt) ;
firingWapon. shoot (next Tgt, detectingSensor);
} /1 end if
el se {
mast er Tar get Li st. add(next Tgt) ;
checkFor Tri gger (det ecti ngSensor, nextTgt, firingWapon);
} /1 end el se
Y} // end if
checkEnt er Sect or (det ecti ngSensor, nextTgt, firingWapon);
} /1 end el se
} // end engageTarget ()

publi ¢ Weapon sel ect Fi ri ngWeapon(Target target, double range){
String targetCl assification;
String target Type;
doubl e maxPk = 0;
int detectionStatus = target.getDetectionStatus();
Vect or weapons = ((Vehicl e)getParent()).get Wapons();
Weapon weaponCf Choi ce = (Weapon) weapons. firstEl ement();

if (detectionStatus == 4){
target Type = target. get Target Type();
for (Enumeration enum = weapons. el enents(); enum hasMoreEl enents();){
Weapon t enpWeapon = (\Weapon) enum next El enent () ;
String weaponNanme = tenpWeapon. get WeaponNane() ;
doubl e pk = Kill Tabl e. get Pk(weaponNane, targetType, "frontal", range);
maxPk = Mat h. max(pk, maxPk);
if (pk == maxPk) {
weaponOf Choi ce = t enpWeapon;
} /1 end if
} /1 end for
return weaponCf Choi ce;
} /] end else if

if (detectionStatus == 3){
targetClassification =target.getC assification();
} /1 end if
el se {
targetCl assification = "TANK";
} /1 end else
return weaponCf Choi ce;
} /1 end sel ect FiringWapon()

/| ===

/1 Uility Methods
/| ===

public String toString() {return getName();}

public double retrievePk(double[][] killMatrix, double targetRange){
int xx = 0;
doubl e kil l Range = 0;

102

while(killMatrix[xx][1] !'= 0){
kill Range = kill Matrix[xx][0];
if (killRange >= target Range){
return kill Matrix[xx][1];
Y} // end if
XX++;
}/ 1 end while
return kill Matrix[xx - 1][1];
} // end retrievePk;

public void checkEnt er Sect or (Sensor detectingSensor, Target tgt, Wapon firingWapon){

Coor 3D firingVehPos (Coor 3D get Parent () .get Property("CurrentPos");
Coor 3D t arget VehPos = tgt. get Current Pos();
Coor 3D firingVehVel = (Coor3D getParent().getProperty("Velocity");
Coor 3D target VehVel = tgt.getTargetVel ocity();
doubl e proxyTime = 0.0;
doubl e tineStep = .0083;
doubl e range = firingVehPos. di st To(t ar get VehPos) ;
Coor 3D t gt VehDel t aPos, snsVehDel t aPos, rel ativePos;
whil e (range < detectingSensor. get Sensor MaxRange()) {

if (firingVehVel.equal s(new Coor3D(0, 0, 0)) &&

t ar get VehVel . equal s(new Coor3D(0, 0, 0))){
return;
Y} // end if
if (wpnCtrl.inSector(targetVehPos, firingVehPos, firingWapon))({
gener at eEngageEvent (" NewTar get", proxyTinme, tgt, detectingSensor, firingWapon);

return;
Y} // end if
proxyTine += tineStep; /1 increment tine
t gt VehDel t aPos = (Coor 3D)t ar get VehVel . scal ar Mul (ti meSt ep) ; /1 determ ne how far veh
snsVehDel t aPos = (Coor 3D)firingVehVel . scal ar Ml (ti meStep); /1 can nmove in 1tinestep
t ar get VehPos = (Coor 3D)t ar get VehPos. add(t gt VehDel t aPos) ; /'l update positions by
firingVehPos = (Coor3D)firingVehPos. add(snsVehDel t aPos) ; /1 their respective delta
rel ati vePos = (Coor 3D)t arget VehPos. sub(firingVehPos); /] determ ne new range

range = rel ativePos. di st To(new Coor3D(0.0, 0.0, 0.0));
} /] end while
} // end checkEnter Sect or ()

public void checkForTri gger (Sensor detectingSensor, Target tgt, Weapon firingWapon) {
doubl e critical Range = Math. m n(firingWapon. get WaponMaxRange(),
wpnCtrl . get Tri ggerLine());

(Coor 3D get Parent (). get Property("CurrentPos");
tgt. get Current Pos();

(Coor 3D get Parent ().get Property("Vel ocity");
tgt.get Target Vel oci ty();

Coor 3D firingVehPos
Coor 3D t ar get VehPos
Coor 3D firingVehVel
Coor 3D t ar get VehVel

doubl e proxyTime = 0.0;

doubl e tineStep = .0083;

doubl e range = firingVehPos. di st To(t ar get VehPos) ;
Coor 3D t gt VehDel t aPos, snsVehDel t aPos, rel ati vePos;

whil e (range < detectingSensor. get Sensor MaxRange()) {

if (firingVehVel.equal s(new Coor3D(0, 0, 0)) && /1 if both vehicles are not
t ar get VehVel . equal s(new Coor3D(0, 0, 0))){ /1 moving no further events
return; /1 will occur
Y} // end if

if (range <= critical Range){
gener at eEngageEvent (" NewTar get", proxyTinme, tgt, detectingSensor, firingWapon);
return;

Y} // end if

proxyTine += tineStep; /1 increment tine

103

t gt VehDel t aPos
snsVehDel t aPos

t ar get VehPos

(Coor 3D)t ar get VehPos. add(t gt VehDel t aPos) ;
firingVehPos

= (Coor 3D)firingVehPos. add(snsVehDel t aPos) ;
rel ati vePos = (Coor 3D)target VehPos. sub(firingVehPos);
range = rel ativePos. di st To(new Coor3D(0.0, 0.0, 0.0));
} /] end while
} /1 end checkForTri gger ()
} // end class FireControl

(Coor 3D)t ar get VehVel . scal ar Mul (ti meSt ep) ;
(Coor 3D)firi ngVehVel . scal ar Ml (ti meSt ep);

11
11

/1
/1

11

determ ne how far veh
can nove in 1tinestep

updat e positions by
their respective delta

det erm ne new range

104

APPENDIX B: ACRONYMS

AAR — After Action Review

ACDM - Accelerated Decision Making Process
BBS — Brigade/ Battalion Battle Simulation
BOS — Battlefield Operating System

CALL — Center for Army Lessons Learned
CBS — Corps Battle Simulation

CMTC — Combat Maneuver Training Center
COA — Course of Action

CONUS - Continental United States

CPX — Command Post Exercise

CTC — Combat Training Center

DTED — Digital Terrain Elevation Data
DEC — Digital Equipment Corporation
DES — Discrete Event Simulation

GUI — Graphic users Interface

JRTC — Joint Readiness Training Center

Km — Kilometers

MRB — Motorized Rifle Battalion

MRC — Motorized Rifle Company

MRR — Motorized Rifle Regiment

NET — New Equipment Training

NIMA — Nationa Imagery and Mapping Agency
NTC — National Training Center

OC — Observer Controller

OPFOR — Opposing Forces

PC — Personal Computer

105

106

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

LIST OF REFERENCES

U.S. Department of Defense, Department of the Army, FM 100-5 Operations,
Government Printing Office, Washington, D. C. 1993.

U.S. Department of Defense, Department of the Army, FM 101-5 Saff Organization
and Operations, Government Printing Office, Washington, D. C. 1997.

U.S. Army Command and General Staff College, ST 100-9 The Command Estimate
Process, Government Printing Office, Washington, D. C. 1992.

U.S. Army Command and General Staff College, ST 101-5 Command and Saff
Decision Processes Government Printing Office, Washington, D. C. 1995.

Long, Clyde L., Synchronization of Combat Power at the Task Force Level: Defining
a Planning Methodology, Master’s Thesis, U. S. Army Command and General Staff
College, Fort Leavenworth, Kansas, 1989.

National Training Center Brigade Combat Training Team, Accelerated Tactical
Decision Making Process, Classroom training presented by the Brigade Combat
Trainers as part of the NTC' s pre-rotation training of visiting units, 1997.

Titan Inc., Janus 3.X/Unix Model User's Manual, 1993.

U.S. Army National Simulation Center, (Janus) “Information Paper.”
[http://www-leav.army.mil/nsc/famsinVjanus/infopaper.htm], 3 Jan. 97

U.S. Army National Simulation Center, “ Available Janus Terrain.”
[http://www-leav.army.mil/nsc/famsim/janus/terrain.htm], 11 Feb. 99

Defense Modeling and Simulation Office, “BBS — Brigade/Battalion Battle
Simulation.”
[http://www.msrr.dmso.mil/msdocs/sof/BBS.htm], undated

U.S. Army National Simulation Center, “Brigade / Battalion Battle Simulation
Information Paper.”
[http://www-leav.army.mil/nsc/famsim/bbs/infopaper.htm], 11 Feb. 1998

U.S. Army National Simulation Center, “BBS Terrain Information Paper.”
[http://www-leav.army.mil/nsc/famsim/bbs/terrain.htm], undated

Defense Modeling and Simulation Office, “CBS — Corps Battle Simulation.”
[http://mwww.msrr.dmso.mil/msdocs/sof/CBS.htm], undated

U.S. Army National Simulation Center, (CBS) “Information Paper.”
[http://www-leav.army.mil/nsc/famsim/cbs/infopaper.htm], 18 Sep. 98

107

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

U.S. Army National Simulation Center, “Corps Battle Simulation Playboxes.”
[http://www-leav.army.mil/nsc/famsim/cbs/play.htm], undated

Telephone conversation between MAJ Raymond Stienbart, Janus Team Chief at the
National Simulation Center and the author, 12 Apr 1999.

Telephone conversation between Mr. David Sargent, CBS Operations Research
Analyst at the National Simulation Center and the author, 12 Apr 1999.

U.S. Army Center for Lessons Learned, “ Military Decision Making: Abbreviated
Planning”
[http://call.army.mil/call/newsltrs/95-12upd/table.htm], 1995

U.S. Army Center for Lessons Learned, “ National Training Center Trends 1¥ and 2™
Qtrs,, Fy 98"
[http://call.army.mil/call/ctc_bull/98-14/intro.htm], 1998

U.S. Army Center for Lessons Learned, “ National Training Center Trends 3rd' and
4th Qtrs,, FY 977
[http://call.army.mil/call/ctc_bull/98-4ntc/intro.htm], 1998

U.S. Army Center for Lessons Learned, “ National Training Center Trends
Compendium 3QFY 96 through 2QFY 97~
[http://call.army.mil/call/ctc_bull/97-17/intro.htm], 1997

U.S. Army Center for Lessons Learned, “ National Training Center Priority Trends
4AQFY 94 through 2QFY 96”
[http://call.army.mil/call/ctc_bull/ntc96pri/ntc96toc.htm], 1996

U.S. Army Center for Lessons Learned, “JRTC Trends 4QFY 97 & 1QFY 98"
[http://call.army.mil/call/ctc_bull/98-20/jrtctoc2.htm], 1998

U.S. Army Center for Lessons Learned, “JRTC Trends Compendium 4QFY 96
through 3QFY 97~
[http://call.army.mil/call/ctc_bull/98-7/table.htm], 1997

U.S. Army Center for Lessons Learned, “Joint Readiness Training Center Priority
Trends 4QFY 94 through 3QFY 96"
[http://call.army.mil/call/ctc_bull/jrtc96pt/jro96pt.htm], 1996

Szyperski, Clemens, Component Software Beyond Object-Oriented Programming,
Addison Wesley Longman Limited, 1997

Arntzen, A., Software Components for Air Defense Planning, Master’'s Thesis, Naval
Postgraduate School, Monterey, California, September 1998.

108

[28]

[29]

[30]

Schrepf, N, Visual Planning Aid for Movement of Ground Forces in Operations
Other Than War, Master’s Thesis, Naval Postgraduate School, Monterey, California,
March 1999.

Buss, A. H., Smple Movement and Detection, Class Notes, June 1998.
Stork, K, A Smulation Study of Countermeasure Effectiveness Against Anti-Ship

Misses, Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1996.

109

110

INITIAL DISTRIBUTION LIST

Defense Technicd Informaetion Center

8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library
Naval Postgraduate School

411 Dyer Rd.

Monterey, California 93943-5101

Capt. Steve Chapman, USN
N6M

2000 Navy Pentagon

Room 4C445

Washington, DC 20350-2000

George Phillips
CNO, N6M1
2000 Navy Pentagon

Room 4C445

Washingon, DC 20350-2000

Mike Macedonia
Chief Scientist and Technical Director

US Army STRICOM

12350 Research Parkway

Orlando, FL 32826-3276

National Simulation Center (NSC)
ATTN:ATZL-NSC (Jerry Ham)
410 Kearney Avenue --- Building 45
Fort Leavenworth, KS 66027-1306

Michael Bailey
Principal Analyst, Modeling and Simulation

Marine Corps Combat Development Command (Code 56)

3300 Russell Road

Quantico, VA 22134

Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

111

10.

11.

Operations Research Department
Naval Postgraduate School
Monterey, CA 93940-5000

Mathematics Department
Naval Postgraduate School
Monterey, CA 93940-5000

williamE. Bohman

3155 Lookout Circle
Cincinnati, OH 45208

112

89

